

Modulhandbuch

B.Sc. Geoinformatik, PO 2011 Fakultät für Angewandte Informatik

Sommersemester 2017

Liebe Studierenden,

damit man bei unseren Studiengängen den Überblick behält, wer in welcher Prüfungsordnungsversion studiert und für wen somit welches Modulhandbuch gilt, gibt es nun für alle Informatik-Studiengänge (außer B.Sc. WIN, M.Sc. GeoInf, Elite-SE) eine Zusatzinformation auf der ersten Seite: Die eindeutige Angabe "Studienbeginn bis/ab", z.B. "Studienbeginn bis SS16" gilt für jene Studierenden, die sich spätestens zum SS 2016 im jeweiligen Studiengang eingeschrieben haben. Alle, die zum WS 2016/2017 begonnen haben, müssen das dazu gehörige Modulhandbuch aufschlagen.

So ist auf einen Blick erkennbar, ob ihr das richtige Modulhandbuch gefunden habt. Wenn es noch keine Angabe "bis" gibt, so ist diese noch offen, da es (noch) keine neuere Ausprägung des Studiengangs gibt (derzeit gibt es nur eine Version z.B. im B.Sc. GeoInf und B.Sc./M.Sc. IngInf).

Im B.Sc. Geoinformatik gibt es außerdem noch folgende Neuerung:

Die Module

- INF-0074: Seminar Database Processing on GPUs f
 ür Bachelor
- INF-0202: Seminar Soziale Netzewerke und Graphendatenbanken für Bachelor wurden ersetzt durch
 - INF-0226 Seminar Datenbanksysteme für Bachelor
 - INF-0241 Seminar Informationssysteme für Bachelor

Beachtet, dass neue Module keine BScGI_-Signatur mehr bekommen, sondern nur noch unter einheitlicher INF-Modulsignatur auftauchen.

Da das Modulhandbuch ein Service für euch als Studierende ist, arbeite ich eng mit der Fachschaft Geographie und der Studierendenvertretung Informatik zusammen. Solltet Ihr Anregungen, Fragen, Kritik oder Verbesserungsvorschläge zum Modulhandbuch haben, so teilt diese einfach der Fachschaft Geographie (B-1020, <u>fachschaft@geo.uni-augsburg.de</u>) bzw. der Studierendenvertretung Informatik (1007N, <u>fsinfo@informatik.uni-augsburg.de</u>) mit.

Viele Grüße,

Euer Modulhandbuch-Beauftragter

Martin Frieb

ID	Modul	Semester	ECTS	SWS	Prüfung
	B.Sc. Geoinformatik				
1	Modulgruppe: A: Informatik		52		
	Alle Module in dieser Modulgruppe sind Pflichtmodule.				
BScGI_DB1	Datenbanksysteme	jedes	8	4 Vorlesung	Klausur
		Wintersemester		2 Übung	90Minuten
BScGI_MM1	Multimedia Grundlagen I	jedes	8	4 Vorlesung	Klausur
		Wintersemester		2 Übung	90Minuten
					Klausur
					120Minuten
BScGI_Inf1	Informatik 1	jedes	8	4 Vorlesung	Klausur
		Wintersemester		2 Übung	120Minuten
BScGI_Inf2	Informatik 2	jedes	8	4 Vorlesung	Klausur
		Sommersemester		2 Übung	120Minuten
BScGI_PRK	Programmierkurs	jedes	4	2 Vorlesung	praktische Prüfung
		Semester		1 Übung	150Minuten
BScGI_Inf3	Informatik 3	jedes	8	4 Vorlesung	Klausur
		Wintersemester		2 Übung	120Minuten
BScGI_SWT	Softwaretechnik	jedes	8	2 Vorlesung	Klausur
		Wintersemester		4 Übung	90Minuten
2	Modulgruppe: B: Mathematik		22		
	Pflichtmodule:				
	Lineare Algebra I oder alternativ Mathematik für Infor	matiker 1			
	 Analysis I oder alternativ Mathematik f ür Informatiker 				

Stand: Sommersemester 2017 Seite 2 von 12

	Diskrete Strukturen für Informatiker				
BScGI_DS	Diskrete Strukturen für Informatiker	jedes Wintersemester	6	3 Vorlesung 2 Übung	Klausur 120Minuten
BScGI_LA1	Lineare Algebra I	jedes Wintersemester	8	6	Modulprüfung (Portfolioprüfung) keine Einheit gewählt
BScGI_AN1	Analysis I	jedes Semester	8	6 Übung	Portfolioprüfung keine Einheit gewählt
BScGI_MFI1	Mathematik für Informatiker I	jedes Wintersemester	8	4 Vorlesung 2 Übung 2 Übung 2 Vorlesung + Übung	Klausur 180Minuten
BScGI_MFI2	Mathematik für Informatiker II	jedes Sommersemester	8	4 Vorlesung 2 Übung 2 Übung 2 Übung	Klausur 180Minuten
3	Modulgruppe: C: Geoinformatik		42	_	
	Alle Module in dieser Modulgruppe sind Pflichtmodule.				
BScGI_GI	Geoinformatik	jedes Wintersemester	10	2 Vorlesung 2 Übung 2 Übung	Klausur 90Minuten
BScGI_KF	Kartographie und Fernerkundung	jedes Sommersemester	10	2 Vorlesung 2 Vorlesung	Klausur 90Minuten
BScGI_AGI	Angewandte Geoinformatik	jedes Semester	10	2 Übung 2 Praktikum	Portfolioprüfung (mündl. Prüfung oder Projektarbeit)

Stand: Sommersemester 2017 Seite 3 von 12

BScGI_GS	Geostatistik (BScGI)	jährlich (s. Text)	12	2 Vorlesung 2 Übung 2 Seminar	Modulprüfung
4	Modulgruppe: D: Geographie		40		
	Alle Module in dieser Modulgruppe sind Pflichtmodule.				
BScGI_HG1	Humangeographie I	jedes Wintersemester	10	4 Vorlesung 2 Proseminar	Klausur 90Minuten
BScGI_HG2	Humangeographie II	jedes Sommersemester	10	4 Vorlesung 2 Proseminar	Klausur 90Minuten
BScGI_PG1	Physische Geographie I	jedes Wintersemester	10	4 Vorlesung 2 Proseminar	Klausur 90Minuten
BScGI_PG2	Physische Geographie II	jedes Sommersemester	10	4 Vorlesung 2 Proseminar	Klausur 90Minuten
5	Modulgruppe: E: Wahlpflicht		12		
	In dieser Modulgruppe sind 12 Leistungspunkte zu erbrin	gen.			
BScGI_ATG	Aktuelle Themen der Geoinformatik	in der Regel mind. 1x pro Studienjahr	6	2 Seminar	Mündliche Prüfung (oder Projektbericht)
BScGI_FGI	Forschungsmodul Geoinformatik	nach Bedarf WS oder SS	6	2 Seminar	Projektarbeit
BScGI_VIZ	Geovisualisierung	jedes Wintersemester	6	2 Übung	praktische Prüfung

Stand: Sommersemester 2017 Seite 4 von 12

BScGI_GVS	Grundlagen verteilter Systeme	jedes Wintersemester	5	2 Vorlesung 2 Übung	Klausur 90Minuten
BScGI_SVS	Softwaretechnologien für verteilte Systeme	unregelmäßig	5	2 Vorlesung 2 Übung	Klausur 90Minuten
BScGI_SSE	Seminar über Software Engineering verteilter Systeme (BA)	jedes Semester	4	2 Seminar	Seminar
BScGI_FPVS	Forschungsmodul Softwaremethodiken für verteilte Systeme	nach Bedarf	6	1 Praktikum	Praktikum
BScGI_PMPVS	Praxismodul Softwaremethodiken für verteilte Systeme	nach Bedarf	11	1 Praktikum	Praktikum
BScGI_EAG	Einführung in die algorithmische Geometrie	unregelmäßig	5	2 Vorlesung 2 Übung	Mündliche Prüfung (Dauer: 30-45 Minuten)
BScGI_EPA	Einführung in parallele Algorithmen	unregelmäßig	5	2 Vorlesung 2 Übung	Mündliche Prüfung (Dauer: 30-45 Minuten)
BScGI_FN	Flüsse in Netzwerken	unregelmäßig	8	4 Vorlesung 2 Übung	Mündliche Prüfung (Dauer: 30-45 Minuten)
BScGI_PGA	Praktikum: Graphalgorithmen	unregelmäßig	8	6 Praktikum	Praktikum
BScGI_PZG	Praktikum: Zeichnen von Graphen	unregelmäßig	8	6 Praktikum	Praktikum
BScGI_PMTI	Praxismodul Theoretische Informatik	nach Bedarf	11	1 Praktikum	Praktikum

Stand: Sommersemester 2017 Seite 5 von 12

BScGI_GOC	Grundlagen des Organic Computing	jedes Wintersemester	5	2 Vorlesung 2 Übung	Mündliche Prüfung 30Minuten
BScGI_AHS	Ad-Hoc- und Sensornetze	jedes Sommersemester	5	2 Vorlesung 2 Übung	Mündliche Prüfung 30Minuten
BScGI_SSVS	Seminar: Selbstorganisation in Verteilten Systemer	n jedes Sommersemester	4	2 Seminar	Seminar
BScGI_SAHS	Seminar Ad Hoc und Sensornetze	jedes Wintersemester	4	2 Seminar	Seminar
BScGI_FOC	Forschungsmodul Organic Computing	nach Bedarf	6	1 Praktikum	Praktikum
BScGI_PMOC	Praxismodul Organic Computing	nach Bedarf	11	1 Praktikum	Praktikum
BScGI_FDB	Forschungsmodul Datenbanken und Informationssysteme	nach Bedarf	6	1 Praktikum	Praktikum
BScGI_PMDB	Praxismodul Datenbanken und Informationssystem	ne nach Bedarf	11	1 Praktikum	Praktikum
BScGI_KS	Kommunikationssysteme	jedes Wintersemester	8	4 Vorlesung 2 Übung	Klausur 120Minuten
BScGI_FKT	Forschungsmodul Kommunikationssysteme	nach Bedarf	6	1 Praktikum	Praktikum
BScGI_PMKT	Praxismodul Kommunikationssysteme	nach Bedarf	11	1 Praktikum	Praktikum

Stand: Sommersemester 2017 Seite 6 von 12

BScGI_MMP	Multimedia Projekt	jedes Semester	10	6 Praktikum	Projektarbeit
BScGI_BN	Bayesian Networks	jedes Sommersemester	5	2 Vorlesung 2 Übung	Klausur 90Minuten
BScGI_SMDV	Seminar Multimediale Datenverarbeitung	jedes Wintersemester	4	2 Seminar	Seminar
BScGI_FMC	Forschungsmodul Multimedia Computing & Computer Vision	nach Bedarf	6	1 Praktikum	Praktikum
BScGI_PMMC	Praxismodul Multimedia Computing	nach Bedarf	11	1 Praktikum	Praktikum
BScGI_HSP	Halbordnungssemantik paralleler Systeme	unregelmäßig	6	3 Vorlesung 1 Übung	Klausur 90Minuten
BScGI_SBDUK	Seminar Bottom-Up Datenverarbeitung auf der UNIX-Kommandozeile	unregelmäßig	4	2 Seminar	Seminar
BScGI_SSP	Seminar Strukturiertes Programmieren	unregelmäßig	4	2 Seminar	Seminar
BScGI_SGS	Seminar Grundlagen der Sprachverarbeitung	unregelmäßig	4	2 Seminar	Seminar
BScGI_SNS	Seminar Nebenläufige Systeme	unregelmäßig	4	2 Seminar	Seminar
BScGI_FLI	Forschungsmodul Lehrprofessur für Informatik	nach Bedarf	6	1 Praktikum	Praktikum

Stand: Sommersemester 2017 Seite 7 von 12

BScGI_PMLI	Praxismodul Lehrprofessur für Informatik	nach Bedarf	11	1 Praktikum	Praktikum
BScGI_ETI	Einführung in die Theoretische Informatik	jedes Sommersemester	8	4 Vorlesung 2 Übung	Klausur 120Minuten
BScGI_GP	Graphikprogrammierung	unregelmäßig	8	4 Vorlesung 2 Übung	Klausur 120Minuten
BScGI_SPM	Seminar Programmiermethodik und Multimediale Informationssysteme für Bachelor	in der Regel mind. 1x pro Studienjahr	4	2 Seminar	Seminar
BScGI_FPM	Forschungsmodul Programmiermethodik und Multimediale Informationssysteme	nach Bedarf	6	1 Praktikum	Praktikum
BScGI_PMPM	Praxismodul Programmiermethodik und Multimed Informationssysteme	iale nach Bedarf	11	1 Praktikum	Praktikum
BScGI_SROB	Seminar Robotik	jedes Sommersemester	4	2 Seminar	Seminar
BScGI_SSI	Seminar Internetsicherheit	unregelmäßig (i. d. R. im SoSe)	4	2 Seminar	Seminar
BScGI_SEIS	Seminar Software- und Systems Engineering (Bachelor)	jedes Wintersemester	4	2 Seminar	Seminar
BScGI_FSSE	Forschungsmodul Software- und Systems Engineering	nach Bedarf	6	1 Praktikum	Praktikum
BScGI_PMSSE	Praxismodul Software- und Systems Engineering	nach Bedarf	11	1 Praktikum	Praktikum

Stand: Sommersemester 2017 Seite 8 von 12

BScGI_SI	Systemnahe Informatik	jedes Sommersemester	8	4 Vorlesung 2 Übung	Klausur 90Minuten
BScGI_MCP	Multicore-Programmierung	jedes Wintersemester	5	2 Vorlesung 2 Übung	Klausur 60Minuten
BScGI_PEB	Praktikum Hardwarenahe Programmierung	jedes Wintersemester	5	4 Praktikum	Praktikum
BScGI_SMP	Seminar Grundlagen moderner Prozessorarchitekturen	jedes Sommersemester	4	2 Seminar	Seminar
BScGI_CPS	Seminar Cyber-Physical Systems	jedes Wintersemester	4	2 Seminar	Seminar
BScGI_FSIK	Forschungsmodul Systemnahe Informatik und Kommunikationssysteme	nach Bedarf	6	1 Praktikum	Praktikum
BScGI_PMSIK	Praxismodul Systemnahe Informatik und Kommunikationssysteme	nach Bedarf	11	1 Praktikum	Praktikum
BScGI_PMP	Praktikum Multicore-Programmierung	wurde ersetzt durch INF-0216	5	4 Praktikum	Praktikum
BScGI_Linf	Logik für Informatiker	jedes Wintersemester	6	3 Vorlesung 2 Übung	Klausur 100Minuten
BScGI_APP	Algebraische Beschreibung paralleler Prozesse	unregelmäßig	6	3 Vorlesung 1 Übung	Mündliche Prüfung 30Minuten
BScGI_EA	Endliche Automaten	unregelmäßig	5	3 Vorlesung + Übung	Mündliche Prüfung 30Minuten

Stand: Sommersemester 2017 Seite 9 von 12

BScGI_STVS	Seminar Theorie verteilter Systeme B	unregelmäßig	4	2 Seminar	Seminar
BScGI_FTVS	Forschungsmodul Theorie verteilter Systeme	nach Bedarf	6	1 Praktikum	Praktikum
BScGI_PMTVS	Praxismodul Theorie verteilter Systeme	nach Bedarf	11	1 Praktikum	Praktikum
BScGI_MM2	Multimedia Grundlagen II	jedes Sommersemester	8	4 Vorlesung 2 Übung	Klausur 90Minuten
BScGI_DSP	Digital Signal Processing I	wird nicht mehr angeboten!	6	4 Vorlesung	Klausur 100Minuten
BScGI_E3D	Einführung in die 3D-Gestaltung	wird nicht mehr angeboten!	6	3 Vorlesung 1 Übung	Projektarbeit
BScGI_FMDI	Fundamental Issues in Multimodal Dialogue and Interaction	unregelmäßig	4	2 Seminar	Seminar
BScGI_SSPR	Seminar Selected Topics in Signal and Pattern Recognition	wird nicht mehr angeboten!	4	2 Seminar	Seminar
BScGI_FHCM	Forschungsmodul Human-Centered Multimedia	nach Bedarf	6	1 Praktikum	Praktikum
BScGI_SAD	Seminar Algorithmen und Datenstrukturen für Bachelor	unregelmäßig	4	2 Seminar	Seminar

Stand: Sommersemester 2017 Seite 10 von 12

INF-0218	Seminar Architektur- und Technologiekonzepte (BA)) unregelmäßig	4	2 Seminar	Seminar
INF-0226	Seminar Datenbanksysteme für Bachelor	unregelmäßig (i. d. R.	4	2 Seminar	Seminar Stunden
INF-0231	Seminar Medical Information Sciences (BA)	im SoSe) jedes Semester	4	2 Seminar	Seminar
INF-0241	Seminar Informationssysteme für Bachelor	unregelmäßig (i. d. R. im WS)	4	2 Seminar	Seminar Stunden
6	Modulgruppe: F: Abschlussleistung		12		
	Alle Module in dieser Modulgruppe sind Pflichtmodule.				
BScGI_BA	Bachelorarbeit	nach Bedarf	12	1 -	Bachelorarbeit (Schriftliche Abschlussarbeit und Vortrag von 20-45 min.)
7	Zusatzangebot: Freiwillige Veranstaltungen				
	Die hier aufgeführten Veranstaltungen sind freiwillig und gebe Leistungspunkte. Ihre Inhalte sind jedoch eine sinnvolle Ergär bestehenden Lehrangebot.				
INF-0221	Anleitung zu wissenschaftlichen Arbeiten	jedes Semester	0	1	
INF-0222	Oberseminar Informatik	jedes Semester	0	2 Seminar	
MTH-6020	Mathematik für Informatiker III a (Ergänzungsvorlesung)	jedes Wintersemester	0	2 Vorlesung	

Stand: Sommersemester 2017 Seite 11 von 12

MTH-6021 Mathematik für Informatiker III b jedes 0 2 Vorlesung (Ergänzungsvorlesung) Sommersemester

Stand: Sommersemester 2017 Seite 12 von 12

Übersicht nach Modulgruppen

1) B.Sc. Geoinformatik

Alle Module in dieser Modulgruppe sind Pflichtmodule.	
INF-0073 (= BScGI_DB1): Datenbanksysteme (8 ECTS/LP, Pflicht)	7
INF-0087 (= BScGI_MM1): Multimedia Grundlagen I (8 ECTS/LP, Pflicht)	8
INF-0097 (= BScGI_Inf1): Informatik 1 (8 ECTS/LP, Pflicht)	10
INF-0098 (= BScGI_Inf2): Informatik 2 (8 ECTS/LP, Pflicht)	12
INF-0100 (= BScGI_PRK): Programmierkurs (4 ECTS/LP, Pflicht)	15
INF-0111 (= BScGI_Inf3): Informatik 3 (8 ECTS/LP, Pflicht)	17
INF-0120 (= BScGI_SWT): Softwaretechnik (8 ECTS/LP, Pflicht)	18
b) B: Mathematik ECTS: 22 Pflichtmodule:	
 Lineare Algebra I oder alternativ Mathematik für Informatiker 1 Analysis I oder alternativ Mathematik für Informatiker 2 Diskrete Strukturen für Informatiker 	
INF-0109 (= BScGI_DS): Diskrete Strukturen für Informatiker (6 ECTS/LP, Pflicht)	20
MTH-1000 (= BScGI_LA1): Lineare Algebra I (8 ECTS/LP, Wahlpflicht)	21
MTH-1020 (= BScGI_AN1): Analysis I (8 ECTS/LP, Wahlpflicht)	23
MTH-6000 (= BScGI_MFI1): Mathematik für Informatiker I (8 ECTS/LP, Wahlpflicht)	25
MTH-6010 (= BScGI_MFI2): Mathematik für Informatiker II (8 ECTS/LP, Wahlpflicht)	27
c) C: Geoinformatik ECTS: 42 Alle Module in dieser Modulgruppe sind Pflichtmodule.	
GEO-1004 (= BScGl_GI): Geoinformatik (10 ECTS/LP, Pflicht)	29
GEO-1015 (= BScGI_KF): Kartographie und Fernerkundung (10 ECTS/LP, Pflicht)	32
GEO-3081 (= BScGI_AGI): Angewandte Geoinformatik (10 ECTS/LP, Pflicht)	34
GEO-3096 (= BScGI_GS): Geostatistik (BScGI) (12 ECTS/LP, Pflicht)	36
d) D: Geographie ECTS: 40 Alle Module in dieser Modulgruppe sind Pflichtmodule.	
GEO-1009 (= BScGI_HG1): Humangeographie I (10 ECTS/LP, Pflicht)	38

	GEO-1012 (= BScGI_HG2): Humangeographie II (10 ECTS/LP, Pflicht)	40
	GEO-1017 (= BScGI_PG1): Physische Geographie I (10 ECTS/LP, Pflicht)	43
	GEO-1020 (= BScGI_PG2): Physische Geographie II (10 ECTS/LP, Pflicht)	45
e)	E: Wahlpflicht ECTS: 12 In dieser Modulgruppe sind 12 Leistungspunkte zu erbringen.	
	GEO-3080 (= BScGI_ATG): Aktuelle Themen der Geoinformatik (6 ECTS/LP, Wahlpflicht)	47
	GEO-3090 (= BScGI_FGI): Forschungsmodul Geoinformatik (6 ECTS/LP, Wahlpflicht)	48
	GEO-3104 (= BScGI_VIZ): Geovisualisierung (6 ECTS/LP, Wahlpflicht)	49
	INF-0023 (= BScGI_GVS): Grundlagen verteilter Systeme (5 ECTS/LP, Wahlpflicht)	51
	INF-0024 (= BScGI_SVS): Softwaretechnologien für verteilte Systeme (5 ECTS/LP, Wahlpflicht)	52
	INF-0026 (= BScGI_SSE): Seminar über Software Engineering verteilter Systeme (BA) (4 ECTS/LF Wahlpflicht)	
	INF-0029 (= BScGI_FPVS): Forschungsmodul Softwaremethodiken für verteilte Systeme (6 ECTS/Wahlpflicht)	
	INF-0030 (= BScGI_PMPVS): Praxismodul Softwaremethodiken für verteilte Systeme (11 ECTS/LF Wahlpflicht)	
	INF-0043 (= BScGI_EAG): Einführung in die algorithmische Geometrie (5 ECTS/LP, Wahlpflicht)	56
	INF-0044 (= BScGI_EPA): Einführung in parallele Algorithmen (5 ECTS/LP, Wahlpflicht)	57
	INF-0045 (= BScGI_FN): Flüsse in Netzwerken (8 ECTS/LP, Wahlpflicht)	58
	INF-0046 (= BScGI_PGA): Praktikum: Graphalgorithmen (8 ECTS/LP, Wahlpflicht)	60
	INF-0047 (= BScGI_PZG): Praktikum: Zeichnen von Graphen (8 ECTS/LP, Wahlpflicht)	61
	INF-0049 (= BScGI_PMTI): Praxismodul Theoretische Informatik (11 ECTS/LP, Wahlpflicht)	62
	INF-0060 (= BScGI_GOC): Grundlagen des Organic Computing (5 ECTS/LP, Wahlpflicht)	63
	INF-0061 (= BScGI_AHS): Ad-Hoc- und Sensornetze (5 ECTS/LP, Wahlpflicht)	65
	INF-0062 (= BScGI_SSVS): Seminar: Selbstorganisation in Verteilten Systemen (4 ECTS/LP, Wahlpflicht)	67
	INF-0063 (= BScGI_SAHS): Seminar Ad Hoc und Sensornetze (4 ECTS/LP, Wahlpflicht)	68
	INF-0064 (= BScGI_FOC): Forschungsmodul Organic Computing (6 ECTS/LP, Wahlpflicht)	69
	INF-0065 (= BScGI_PMOC): Praxismodul Organic Computing (11 ECTS/LP, Wahlpflicht)	70
	INF-0075 (= BScGI_FDB): Forschungsmodul Datenbanken und Informationssysteme (6 ECTS/LP, Wahlpflicht)	
	INF-0076 (= BScGI_PMDB): Praxismodul Datenbanken und Informationssysteme (11 ECTS/LP, Wahlpflicht)	

INF-0081 (= BScGI_KS): Kommunikationssysteme (8 ECTS/LP, Wahlpflicht)	73
INF-0082 (= BScGI_FKT): Forschungsmodul Kommunikationssysteme (6 ECTS/LP, Wahlpflicht)	75
INF-0083 (= BScGI_PMKT): Praxismodul Kommunikationssysteme (11 ECTS/LP, Wahlpflicht)	76
INF-0086 (= BScGI_MMP): Multimedia Projekt (10 ECTS/LP, Wahlpflicht)	77
INF-0088 (= BScGI_BN): Bayesian Networks (5 ECTS/LP, Wahlpflicht)	78
INF-0089 (= BScGI_SMDV): Seminar Multimediale Datenverarbeitung (4 ECTS/LP, Wahlpflicht)	80
INF-0090 (= BScGI_FMC): Forschungsmodul Multimedia Computing & Computer Vision (6 ECTS/Wahlpflicht)	
INF-0091 (= BScGI_PMMC): Praxismodul Multimedia Computing (11 ECTS/LP, Wahlpflicht)	82
INF-0099 (= BScGI_HSP): Halbordnungssemantik paralleler Systeme (6 ECTS/LP, Wahlpflicht)	83
INF-0101 (= BScGI_SBDUK): Seminar Bottom-Up Datenverarbeitung auf der UNIX-Kommandozei (4 ECTS/LP, Wahlpflicht)	
INF-0102 (= BScGI_SSP): Seminar Strukturiertes Programmieren (4 ECTS/LP, Wahlpflicht)	87
INF-0103 (= BScGI_SGS): Seminar Grundlagen der Sprachverarbeitung (4 ECTS/LP, Wahlpflicht)	89
INF-0104 (= BScGI_SNS): Seminar Nebenläufige Systeme (4 ECTS/LP, Wahlpflicht)	90
INF-0105 (= BScGI_FLI): Forschungsmodul Lehrprofessur für Informatik (6 ECTS/LP, Wahlpflicht)	91
INF-0106 (= BScGI_PMLI): Praxismodul Lehrprofessur für Informatik (11 ECTS/LP, Wahlpflicht)	93
INF-0110 (= BScGI_ETI): Einführung in die Theoretische Informatik (8 ECTS/LP, Wahlpflicht)	95
INF-0112 (= BScGI_GP): Graphikprogrammierung (8 ECTS/LP, Wahlpflicht)	97
INF-0113 (= BScGI_SPM): Seminar Programmiermethodik und Multimediale Informationssysteme Bachelor (4 ECTS/LP, Wahlpflicht)	
INF-0114 (= BScGI_FPM): Forschungsmodul Programmiermethodik und Multimediale Informationssysteme (6 ECTS/LP, Wahlpflicht)	.100
INF-0115 (= BScGI_PMPM): Praxismodul Programmiermethodik und Multimediale Informationssysteme (11 ECTS/LP, Wahlpflicht)	.101
INF-0124 (= BScGI_SROB): Seminar Robotik (4 ECTS/LP, Wahlpflicht)	. 102
INF-0125 (= BScGI_SSI): Seminar Internetsicherheit (4 ECTS/LP, Wahlpflicht)	. 103
INF-0126 (= BScGI_SEIS): Seminar Software- und Systems Engineering (Bachelor) (4 ECTS/LP, Wahlpflicht)	.104
INF-0127 (= BScGI_FSSE): Forschungsmodul Software- und Systems Engineering (6 ECTS/LP, Wahlpflicht)	.105
INF-0128 (= BScGI_PMSSE): Praxismodul Software- und Systems Engineering (11 ECTS/LP, Wahlnflicht)	106

INF-0138 (= BScGI_SI): Systemnahe Informatik (8 ECTS/LP, Wahlpflicht)	.107
INF-0139 (= BScGI_MCP): Multicore-Programmierung (5 ECTS/LP, Wahlpflicht)	.109
INF-0140 (= BScGI_PEB): Praktikum Hardwarenahe Programmierung (5 ECTS/LP, Wahlpflicht)	111
INF-0141 (= BScGI_SMP): Seminar Grundlagen moderner Prozessorarchitekturen (4 ECTS/LP, Wahlpflicht)	.112
INF-0142 (= BScGI_CPS): Seminar Cyber-Physical Systems (4 ECTS/LP, Wahlpflicht)	.113
INF-0143 (= BScGI_FSIK): Forschungsmodul Systemnahe Informatik und Kommunikationssysteme	•
INF-0144 (= BScGI_PMSIK): Praxismodul Systemnahe Informatik und Kommunikationssysteme (1 ECTS/LP, Wahlpflicht)	
INF-0151 (= BScGI_PMP): Praktikum Multicore-Programmierung (5 ECTS/LP, Wahlpflicht)	116
INF-0155 (= BScGI_Linf): Logik für Informatiker (6 ECTS/LP, Wahlpflicht)	117
INF-0156 (= BScGI_APP): Algebraische Beschreibung paralleler Prozesse (6 ECTS/LP, Wahlpflicht)	.119
INF-0157 (= BScGI_EA): Endliche Automaten (5 ECTS/LP, Wahlpflicht)	121
INF-0158 (= BScGI_STVS): Seminar Theorie verteilter Systeme B (4 ECTS/LP, Wahlpflicht)	122
INF-0159 (= BScGI_FTVS): Forschungsmodul Theorie verteilter Systeme (6 ECTS/LP, Wahlpflicht)	.123
INF-0160 (= BScGI_PMTVS): Praxismodul Theorie verteilter Systeme (11 ECTS/LP, Wahlpflicht)	124
INF-0166 (= BScGI_MM2): Multimedia Grundlagen II (8 ECTS/LP, Wahlpflicht)	125
INF-0167 (= BScGI_DSP): Digital Signal Processing I (6 ECTS/LP, Wahlpflicht)	.127
INF-0168 (= BScGI_E3D): Einführung in die 3D-Gestaltung (6 ECTS/LP, Wahlpflicht)	128
INF-0171 (= BScGI_FMDI): Fundamental Issues in Multimodal Dialogue and Interaction (4 ECTS/L Wahlpflicht)	
INF-0172 (= BScGI_SSPR): Seminar Selected Topics in Signal and Pattern Recognition (4 ECTS/I Wahlpflicht)	
INF-0173 (= BScGI_FHCM): Forschungsmodul Human-Centered Multimedia (6 ECTS/LP, Wahlpflicht)	.132
INF-0188 (= BScGI_SAD): Seminar Algorithmen und Datenstrukturen für Bachelor (4 ECTS/LP, Wahlpflicht)	.133
INF-0218: Seminar Architektur- und Technologiekonzepte (BA) (4 ECTS/LP, Wahlpflicht)	134
INF-0226: Seminar Datenbanksysteme für Bachelor (4 ECTS/LP, Wahlpflicht)	135
INF-0231: Seminar Medical Information Sciences (BA) (4 ECTS/LP, Wahlpflicht)	137
INF-0241: Seminar Informationssysteme für Bachelor (4 ECTS/LP, Wahlpflicht)	138

f) F: Abschlussleistung ECTS: 12

	Alle Module in dieser Modulgruppe sind Pflichtmodule.	
	GEO-3902 (= BScGI_BA): Bachelorarbeit (12 ECTS/LP, Pflicht)	. 139
g)	Freiwillige Veranstaltungen Die hier aufgeführten Veranstaltungen sind freiwillig und geben keine Leistungspunkte. Ihre Inhalte sind jedoch eine sinnvolle Ergänzung zum bestehenden Lehrangebot.	Э
	INF-0221: Anleitung zu wissenschaftlichen Arbeiten (0 ECTS/LP, Wahlfach)	. 140
	INF-0222: Oberseminar Informatik (0 ECTS/LP, Wahlfach)	.141
	MTH-6020: Mathematik für Informatiker III a (Ergänzungsvorlesung) (0 ECTS/LP, Wahlfach)	. 142
	MTH-6021: Mathematik für Informatiker III b (Ergänzungsvorlesung) (0 ECTS/LP, Wahlfach)	. 143

Modul INF-0073 (= BScGI_DB1): Datenbanksysteme

8 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Dr. Markus Endres

Lernziele/Kompetenzen:

Nach der Teilnahme an der Veranstaltung sind die Studierenden in der Lage, die in der Vorlesung Datenbanksysteme I vermittelten fachlichen Grundlagen in die Praxis umzusetzen. Sie verfügen über fachspezifische Kenntnisse grundlegende Problemstellungen im Bereich Datenbanken zu verstehen und durch Anwenden erlernter Fähigkeiten zu lösen.

Schlüsselqualifikationen: Eigenständiges Arbeiten mit Lehrbüchern; Eigenständiges Arbeiten mit Datenbanksystemen; Abstraktionsfähigkeit; Analytische und strukturierte Problemlösungstrategien

Arbeitsaufwand:

Gesamt: 240 Std.

30 Std. Übung (Präsenzstudium) 60 Std. Vorlesung (Präsenzstudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium) 30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

Voraussetzungen: Modul Informatik 2 (INF-0098) - empfohlen		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 3.	Minimale Dauer des Moduls: 1 Semester
SWS : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Datenbanksysteme (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

Die Vorlesung beinhaltet grundlegende Konzepte von Datenbanksystemen und deren Anwendungen. Konkrete Inhalte sind: DB-Architektur, Entity-Relationship-Modell, Relationenmodell, Relationale Query-Sprachen, SQL, Algebraische Query-Optimierung, Implementierung der Relationenalgebra, Ablaufsteuerung paralleler Transaktionen, DB-Recovery und verteilte Transaktionen, Normalformentheorie.

Literatur:

- W. Kießling, G. Köstler: Multimedia-Kurs Datenbanksysteme
- R. Elmasri, S. Navathe: Fundamentals of Database Systems
- · A. Kemper, A. Eickler: Datenbanksysteme
- · J. Ullman: Principles of Database and Knowledge-Base Systems

Modulteil: Datenbanksysteme (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Datenbanksysteme (Klausur)

Klausur / Prüfungsdauer: 90 Minuten

Modul INF-0087 (= BScGI_MM1): Multimedia Grundlagen I

8 ECTS/LP

Version 1.0.0

Modulverantwortliche/r: Prof. Dr. Rainer Lienhart

Lernziele/Kompetenzen:

Die Studierenden besitzen wesentliche Grundlagen über die maschinelle Verarbeitung von multimedialen Daten (Ton, Bild und Video). Sie sind in der Lage, bekannte Verfahren auf dem Gebiet der Verarbeitung von Multimediadaten zu verstehen und programmatisch umzusetzen, sowie die erlernten Prinzipien auf neue Probleme geeignet anzuwenden.

Schüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken

Arbeitsaufwand:

Gesamt: 240 Std.

60 Std. Vorlesung (Präsenzstudium) 30 Std. Übung (Präsenzstudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

Voraussetzungen:		ECTS/LP-Bedingungen:
keine		Erfolgreiche Teilnahme an beiden
		Klausuren: Zwischenklausur in der
		Semestermitte und Abschlussklausur
Angebotshäufigkeit: jedes	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
Wintersemester	ab dem 3.	1 Semester
sws:	Wiederholbarkeit:	
6	siehe PO des Studiengangs	

Modulteile

Modulteil: Multimedia Grundlagen I (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

- 1. Einführung
- 2. Mathematische Grundlagen
- 3. Digitale Signalverarbeitung
- 4. Bildverarbeitung (Bildaufnahme und Bildanzeige, Farbräume, einfache Bildoperationen, komplexe Bildoperationen, Faltung, Segmentierung, Bildmerkmale)
- 5. Datenreduktion

Literatur:

- Oppenheim, A. V., Schafer, R. W., and Buck, J. R. Discrete-time signal processing. Prentice-Hall, 2nd edition. 1999
- Richard G. Lyons. Understanding Digital Signal Processing. Prentice Hall, 3rd edition. 2010
- Bernd Jähne. Digital Image Processing. Springer Verlag
- David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice Hall, Upper Saddle River, New Jersey 07458

Modulteil: Multimedia Grundlagen I (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Zwischenprüfung

Klausur / Prüfungsdauer: 90 Minuten, unbenotet

Beschreibung:

Das Bestehen ist erforderlich für die Teilnahme an der "Multimedia Grundlagen I Klausur"

Prüfung

Multimedia Grundlagen I (Klausur)

Klausur / Prüfungsdauer: 120 Minuten

Beschreibung:

Das Bestehen der Zwischenklausur ist Voraussetzung.

Modul INF-0097 (= BScGl_Inf1): Informatik 1

8 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Robert Lorenz

Lernziele/Kompetenzen:

Teilnehmer verstehen die folgenden wesentlichen Konzepte der Informatik auf einem grundlegenden, Praxisorientierten, aber wissenschaftlichen Niveau: Architektur und Funktionsweise von Rechnern, Informationsdarstellung, Problemspezifikation, Algorithmus, Programm, Datenstruktur, Programmiersprache. Sie können einfache algorithmische Problemstellungen unter Bewertung verschiedener Entwurfsalternativen durch Programmiersprachenunabhängige Modelle lösen und diese in C oder einer ähnlichen imperativen Sprache implementieren. Sie können einfache Kommandozeilen-Anwendungen unter Auswahl geeigneter, ggf. auch dynamischer, Datenstrukturen durch ein geeignet in mehrere Übersetzungseinheiten strukturiertes C-Programm implementieren. Sie verstehen die imperativen Programmiersprachen zugrundeliegenden Konzepte und Modelle und sind in der Lage, andere imperative Programmiersprachen eigenständig zu erlernen. Sie kennen elementare Techniken zur Verifizierung und zur Berechnung der Komplexität von imperativen Programmen und können diese auf einfache Programme anwenden.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken; Eigenständiges Arbeiten mit Lehrbüchern; Eigenständiges Arbeiten mit Programmbibliotheken; Verständliche Präsentation von Ergebnissen; Fertigkeit der Zusammenarbeit in Teams

Bemerkung:

Dieses Modul enstpricht der Veranstaltung "Einführung in die Informatik" für Wirtschaftinformatiker

Arbeitsaufwand:

Gesamt: 240 Std.

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

30 Std. Übung (Präsenzstudium) 60 Std. Vorlesung (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 1.	Minimale Dauer des Moduls: 1 Semester
SWS : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Informatik 1 (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

In dieser Vorlesung wird als Einstieg in die praktische Informatik vermittelt, wie man Probleme der Informationsspeicherung und Informationsverarbeitung mit dem Rechner löst, angefangen bei der Formulierung einer Problemstellung, über den Entwurf eines Algorithmus bis zur Implementierung eines Programms. Die Vorlesung bietet eine Einführung in folgende Themenbereiche:

- 1. Rechnerarchitektur
- 2. Informationsdarstellung
- 3. Betriebssystem
- 4. Der Begriff des Algorithmus (Definition, Darstellung, Determinismus, Rekursion, Korrektheit, Effizienz)
- 5. Datenstruktur
- 6. Programmiersprache
- 7. Programmieren in C

Literatur:

- · R. Richter, P. Sander und W. Stucky: Problem, Algorithmus, Programm, Teubner
- · R. Richter, P. Sander und W. Stucky: Der Rechner als System, Teubner
- H. Erlenkötter: C Programmieren von Anfang an, rororo, 2008
- Gumm, Sommer: Einführung in die Informatik
- B. W. Kernighan, D. M. Ritchie, A.-T. Schreiner und E. Janich: Programmieren in C, Hanser
- C Standard Bibliothek: http://www2.hs-fulda.de/~klingebiel/c-stdlib/
- The GNU C Library: http://www.gnu.org/software/libc/manual/html_mono/libc.html

Modulteil: Informatik 1 (Übung)

Lehrformen: Übung Sprache: Deutsch

SWS: 2

Prüfung

Informatik 1 (Klausur)

Klausur / Prüfungsdauer: 120 Minuten

Beschreibung:

Die Prüfung findet am Ende der Vorlesungszeit statt. Sie kann im darauffolgenden Semester kurz vor Beginn der Vorlesungszeit wiederholt werden.

Modul INF-0098 (= BScGl_Inf2): Informatik 2

8 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Robert Lorenz

Lernziele/Kompetenzen:

Teilnehmer verstehen die folgenden wesentlichen Konzepte/Begriffe der Informatik auf einem grundlegenden, Praxis-orientierten, aber wissenschaftlichen Niveau: Softwareentwurf, Analyse- und Entwurfsmodell, UML, Objektorientierung, Entwurfsmuster, Grafische Benutzeroberfläche, Parallele Programmierung, persistente Datenhaltung, Datenbanken, XML, HTML. Sie können überschaubare nebenläufige Anwendungen mit grafischer Benutzerschnittstelle und persistenter Datenhaltung unter Berücksichtigung einfacher Entwurfsmuster, verschiedener Entwurfsalternativen und einer 3-Schichten-Architektur durch statische und dynamische UML-Diagramme aus verschiedenen Perpektiven modellieren und entsprechend der Diagramme in Java oder einer ähnlichen objektorientierten Sprache implementieren. Sie verstehen die diesen Programmiersprachen zugrundeliegenden Konzepte und Modelle und sind in der Lage, andere objektorientierte Programmiersprachen eigenständig zu erlernen.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken; Eigenständiges Arbeiten mit Lehrbüchern; Eigenständiges Arbeiten mit Programmbibliotheken; Verständliche Präsentation von Ergebnissen; Fertigkeit der Zusammenarbeit in Teams

Bemerkung:

Die erste Hälfte dieser Veranstaltung entspricht der Veranstaltung "Einführung in die Softwaretechnik" für Wirtschaftsinformatiker

Arbeitsaufwand:

Gesamt: 240 Std.

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

30 Std. Übung (Präsenzstudium) 60 Std. Vorlesung (Präsenzstudium)

Voraussetzungen:

Programmierkenntnisse in einer imperativen Programmiersprache (zum

Beispiel C)

Modul Informatik 1 (INF-0097) - empfohlen

· · · ·		
Angebotshäufigkeit: jedes	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
Sommersemester	ab dem 2.	1 Semester
sws:	Wiederholbarkeit:	
6	siehe PO des Studiengangs	

Modulteile

Modulteil: Informatik 2 (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

Ziel der Vorlesung ist eine Einführung in die objektorientierte Entwicklung größerer Softwaresysteme, angefangen bei der Erstellung von Systemmodellen in UML bis zur Implementierung in einer objektorientierten Programmiersprache. Die Vorlesung bietet eine Einführung in folgende Themenbereiche:

- 1. Softwareentwurf
- 2. Analyse- und Entwurfsprozess
- 3. Schichten-Architektur
- 4. UML-Diagramme
- 5. Objektorientierte Programmierung (Vererbung, abstrakte Klassen und Schnittstellen, Polymorphie)
- 6. Entwurfsmuster und Klassenbibliotheken
- 7. Ausnahmebehandlung
- 8. Datenhaltungs-Konzepte
- 9. Grafische Benutzeroberflächen
- 10. Parallele Programmierung
- 11. Programmieren in Java
- 12. Datenbanken
- 13. XML
- 14. HTML

Literatur:

- Ch. Ullenboom, Java ist auch eine Insel, Galileo Computing, http://openbook.galileocomputing.de/javainsel/
- Ch. Ullenboom, Mehr als eine Insel, Galileo Computing, http://openbook.galileocomputing.de/java7/
- M. Campione und K. Walrath, Das Java Tutorial, Addison Wesley, http://docs.oracle.com/javase/tutorial/
- Java-Dokumentation: http://docs.oracle.com/javase/8/docs/api/
- Helmut Balzert, Lehrbuch Grundlagen der Informatik, Spektrum
- Heide Balzert, Lehrbuch der Objektmodellierung , Spektrum
- · B. Oesterreich, Objektorientierte Softwareentwicklung, Oldenbourg

Zugeordnete Lehrveranstaltungen:

Informatik 2 (Vorlesung)

Ziel der Vorlesung ist eine Einführung in die objektorientierte Entwicklung größerer Softwaresysteme, angefangen bei der Erstellung von Systemmodellen in UML bis zur Implementierung in einer objektorientierten Programmiersprache. Die Vorlesung bietet eine Einführung in folgende Themenbereiche: - Softwareentwurf - Analyse- und Entwurfsprozess - Schichten-Architektur - UML-Diagramme - Objektorientierte Programmierung (Vererbung, abstrakte Klassen und Schnittstellen, Polymorphie) - Entwurfsmuster und Klassenbibliotheken - Ausnahmebehandlung - Datenhaltungs-Konzepte - Grafische Benutzeroberflächen - Parallele Programmierung - Programmieren in Java - Datenbanken - XML - HTML

Modulteil: Informatik 2 (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Zugeordnete Lehrveranstaltungen:

Übung zu Informatik 2 (Übung)

Prüfung

Informatik 2 (Klausur)

Klausur / Prüfungsdauer: 120 Minuten

Beschreibung:

Die Prüfung findet am Ende der Vorlesungszeit statt. Sie kann im darauffolgenden Semester kurz vor Beginn der Vorlesungszeit wiederholt werden.

Modul INF-0100 (= BScGl_PRK): Programmierkurs

4 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Robert Lorenz

Lernziele/Kompetenzen:

Teilnehmer verstehen die der verwendeten Programmiersprache zugrundeliegenden Konzepte und Modelle, kennen spezifische Entwurfstechniken und Methoden des strukturierten Programmierens und können diese auf praktisch relevante Problemstellungen mittlerer Größe anwenden. Sie beherrschen den Umgang mit Entwicklungsumgebungen und können sich selbstständig in Programmbibliotheken einarbeiten.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken; Eigenständiges Arbeiten mit Programmbibliotheken; Fertigkeit der Zusammenarbeit in Teams.

Bemerkung:

Der Programmierkurs wird entweder im ersten Semester in C aufbauend auf der Vorlesung "Informatik 1" oder im zweiten Semester in Java aufbauend auf der Vorlesung "Informatik 2" angeboten. Er findet jeweils als 1-wöchtige Blockveranstaltung kurz nach Ende der Vorlesungszeit statt.

Arbeitsaufwand:

Gesamt: 120 Std.

15 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

15 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

45 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

15 Std. Übung (Präsenzstudium)

30 Std. Vorlesung (Präsenzstudium)

Voraussetzungen: Grundlegende Kenntnisse in den Progr (Java-Kurs)	ammiersprachen C (C-Kurs) bzw. Java	
Modul Informatik 1 (INF-0097) - empfor Modul Informatik 2 (INF-0098) - empfor		
Angebotshäufigkeit: jedes Semester	Empfohlenes Fachsemester: ab dem 1.	Minimale Dauer des Moduls: 1 Semester
sws : 3	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Programmierkurs (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch / Englisch

SWS: 2

Inhalte:

Der Programmierkurs wird in den beiden Programmierspachen C und Java angeboten. Es werden anhand praktisch relevanter Problemstellungen die in Informatik 1 (Programmiersprache C) bzw. Informatik 2 (Java) erworbenen Programmierkenntnisse fachspezifisch vertieft.

Themenauswahl:

- · Mathematische Verfahren,
- · Dateien-Eingabe und -Ausgabe,
- · Grafische Simulationen,
- · Netzwerk-Kommunikation

Literatur:

- Programmiersprache C: B. W. Kernighan, D. M. Ritchie, A.-T. Schreiner und E. Janich: Programmieren in C, Hanser
- C Standard Bibliothek: http://www2.hs-fulda.de/~klingebiel/c-stdlib/
- The GNU C Library: http://www.gnu.org/software/libc/manual/html_mono/libc.html
- Ch. Ullenboom, Java ist auch eine Insel, Galileo Computing, http://openbook.galileocomputing.de/javainsel/
- Ch. Ullenboom, Mehr als eine Insel, Galileo Computing, http://openbook.galileocomputing.de/java7/
- M. Campione und K. Walrath, Das Java Tutorial, Addison Wesley, http://docs.oracle.com/javase/tutorial/
- Java-Dokumentation: http://docs.oracle.com/javase/8/docs/api/

Modulteil: Programmierkurs (Übung)

Lehrformen: Übung

Sprache: Deutsch / Englisch

SWS: 1

Prüfung

Abnahme von Programmieraufgaben

praktische Prüfung / Prüfungsdauer: 150 Minuten

Modul INF-0111 (= BScGl_Inf3): Informatik 3

8 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Bernhard Möller

Lernziele/Kompetenzen:

Die Studierenden verfügen über ein grundlegendes Verständnis von Algorithmen und Datenstrukturen. Sie können dieses in konkreten Fragestellungen anwenden und haben ausgewählte Teile der vorgestellten Verfahren eigenständig programmiert.

Schlüsselqualifikationen: analytisch-methodische Kompetenz; Abwägen von Lösungsansätzen; Abstraktionsfähigkeit; Training des logischen Denkens; eigenständiges Arbeiten mit Lehrbüchern und englischsprachiger Fachliteratur; Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 240 Std.

30 Std. Übung (Präsenzstudium) 60 Std. Vorlesung (Präsenzstudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

Voraussetzungen:

Modul Informatik 1 (INF-0097) - empfohlen Modul Informatik 2 (INF-0098) - empfohlen

Modul Diskrete Strukturen für Informatiker (INF-0109) - empfohlen

	, , ,	
Angebotshäufigkeit: jedes	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
Wintersemester	ab dem 3.	1 Semester
sws:	Wiederholbarkeit:	
6	siehe PO des Studiengangs	

Modulteile

Modulteil: Informatik 3 (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

Effizienzbetrachtungen, Bäume, Sortierverfahren, Hashtabellen, Union-Find-Strukturen, Graphen, kürzeste Wege, Minimalgerüste, Greedy-Algorithmen, Backtracking, Tabellierung, amortisierte Komplexität, NP-Vollständigkeit

Literatur:

· Eigenes Skriptum

. M. Weiss: Data Structures and Algorithm Analysis in Java, Pearson 2011

Modulteil: Informatik 3 (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Informatik 3 (Klausur)

Klausur / Prüfungsdauer: 120 Minuten

Modul INF-0120 (= BScGI_SWT): Softwaretechnik

8 ECTS/LP

Version 2.0.0 (seit WS16/17)

Modulverantwortliche/r: Prof. Dr. Wolfgang Reif

Lernziele/Kompetenzen:

Die Studierenden können einen fortgeschrittenen Softwareentwicklungsprozess zur Entwicklung komplexer Softwaresysteme anwenden. Sie können fachliche Lösungskonzepte in Programme umsetzen und Abstraktionen und Architekturen entwerfen. Sie haben die Fertigkeit zur Analyse und Strukturierung von Anforderungen und Lösungsstrategien bei der Softwareentwicklung. Sie können Entwurfsalternativen bewerten, auswählen und anwenden. Sie haben die Fertigkeit, Ideen und Konzepte zu dokumentieren und verständlich und überzeugend darzustellen.

Schlüsselqualifikationen: analytisch-methodische Kompetenz, Abwägen von Lösungsansätzen, Erwerb von Abstraktionsfähigkeiten, Erlernen des eigenständigen Arbeitens mit Lehrbüchern

Arbeitsaufwand:

Gesamt: 240 Std.

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

60 Std. Vorlesung (Präsenzstudium) 30 Std. Übung (Präsenzstudium)

Voraussetzungen: Modul Softwareprojekt (INF-0122) - em	pfohlen	
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Softwaretechnik (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 2

Inhalte:

Die Vorlesung gibt einen Überblick über Methoden zur systematischen Entwicklung von Software, speziell den Unified Process (UP). Dabei werden die Unified Modelling Language (UML) und aktuelle Tools verwendet, die auch in die Übungen einbezogen werden.

Behandelte Themen sind: der Softwarelebenszyklus, der Unified Process, wichtige Aktivitäten der Softwareentwicklung, wie Analyse, Spezifikation, Design, Implementierung und Testen, UML als Modellierungssprache, GRASP und Design Pattern, objektrelationales Mapping, Persistenzframeworks und Qualitätssicherung.

Literatur:

- Craig Larman: Applying UML and Patterns (3. Edition), Prentice Hall 2005
- Rupp, Hahn, Queins, Jeckle, Zengler: UML 2 glasklar (2. Auflage), Hanser 2005
- Gamma, Helm, Johnson, Vlissides: Design Patterns Elements of Reusable Object-Oriented Software, Addison-Wesley 1995
- UML Spezifikation
- Folienhandout

Modulteil: Softwaretechnik (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 4

Prüfung

Softwaretechnik Klausur

Klausur / Prüfungsdauer: 90 Minuten

Modul INF-0109 (= BScGI_DS): Diskrete Strukturen für Informati-

6 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Bernhard Möller

Lernziele/Kompetenzen:

Die Studierenden verstehen die Grundlagen der Diskreten Mathematik, wie sie in vielen Bereichen der Informatik, wie etwa Datenbanken, Compilerbau und natürlich Theoretischer Informatik, wichtig sind. Sie können diese auf konkrete Fragestellungen anwenden.

Schlüsselqualifikationen: analytisch-methodische Kompetenz; Abwägen von Lösungsansätzen; Abstraktionsfähigkeit; Training des logischen Denkens; eigenständiges Arbeiten mit Lehrbüchern und englischsprachiger Fachliteratur; Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 180 Std.

30 Std. Übung (Präsenzstudium) 45 Std. Vorlesung (Präsenzstudium)

22 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

23 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 1.	Minimale Dauer des Moduls: 1 Semester
SWS : 5	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Diskrete Strukturen für Informatiker (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 3

Inhalte:

Relationen, Bild und Urbild, Äquivalenzen und Partitionen, Präordnungen und Ordnungen, Verbände, Bäume, Fixpunkttheorie.

Literatur:

- Eigenes Skriptum
- I. Lehmann, W. Schulz: Mengen-Relationen-Funktionen, Teubner 1997
- G. u. S. Teschl: Mathematik für Informatiker, Band 1, Springer 2008

Modulteil: Diskrete Strukturen für Informatiker (Übung)

Lehrformen: Übung Sprache: Deutsch

SWS: 2

Prüfung

Diskrete Strukturen für Informatiker (Klausur)

Klausur / Prüfungsdauer: 120 Minuten

Modul MTH-1000 (= BScGl_LA1): Lineare Algebra I

8 ECTS/LP

Version 1.0.0 (seit WS15/16)

Modulverantwortliche/r: Prof. Dr. Tatjana Stykel

Lernziele/Kompetenzen:

Die Studierenden kennen die mathematische Struktur von Vektorräumen und linearen Abbildungen in abstrakter Weise und in expliziter Beschreibung. Sie besitzen die Fertigkeiten, selbständig Aufgaben aus diesen Bereichen zu bearbeiten und lineare Strukturen in Problemstellungen zu erkennen und zu nutzen. Sie kennen übliche Rechenverfahren zur Lösung linearer Gleichungssysteme und deren Anwendungsmöglichkeiten. Sie verstehen die Bedeutung der Fragestellung nach Eigenvektoren und Eigenwerten und deren Beantwortung im Falle selbstadjungierter Matrizen.

Integrierter Erwerb von Schlüsselqualifikationen: Kompetenz der logischen Beweisführung, mathematische Ausdrucksweise, wissenschaftliches Denken, Entwickeln von Lösungsstrategien bei vorgegebenen Problemstellungen, wissenschaftliche Kommunikationsfähigkeit.

Arbeitsaufwand:

Gesamt: 240 Std.

4 Std. Vorlesung (Präsenzstudium) 2 Std. Übung (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: 1.	Minimale Dauer des Moduls: 1 Semester
SWS : 6	Wiederholbarkeit: beliebig	

Modulteile

Modulteil: Lineare Algebra I

Sprache: Deutsch Arbeitsaufwand:

> 4 Std. Vorlesung (Präsenzstudium) 2 Std. Übung (Präsenzstudium)

SWS: 6 **ECTS/LP:** 8.0

Inhalte:

Der Inhalt dieses Moduls sind die grundlegenden Rechenverfahren, konkreten Begriffe und wichtigsten Hilfsmittel der Linearen Algebra, etwa Lösungsverfahren für lineare Gleichungssysteme oder die Hauptachsentransformation symmetrischer Matrizen, den Begriff der Dimension eines (Unter-)vektorraumes und die Verwendung der Determinante auch als wichtiges Hilfsmittel für Beweistechniken:

Mengen

Relationen und Abbildungen

Die rationalen, reellen und komplexen Zahlen

Vektorräume und lineare Abbildungen

Lineare und affine Gleichungssysteme

Lineare und affine Unterräume

Dimension von Unterräumen

Ähnlichkeit von Matrizen

Determinanten

Eigenwerte

Hauptachsentransformation Voraussetzungen: keine

Literatur:

Th. Bröcker: Lineare Algebra und Analytische Geometrie (Birkhäuser)

H.J. Kowalsky: Lineare Algebra (de Gruyter)

S. Bosch: Lineare Algebra (Springer)

Prüfung

Lineare Algebra I

Modulprüfung, Portfolioprüfung

Modul MTH-1020 (= BScGl_AN1): Analysis I

8 ECTS/LP

Version 1.0.0 (seit WS15/16)

Modulverantwortliche/r: Prof. Dr. Bernd Schmidt

Lernziele/Kompetenzen:

Die Student(inn)en sind vertraut mit den Grundlagen der Analysis einer reellen Unabhängigen, insbesondere mit Grenzwertprozessen bei Folgen und Reihen sowie Stetigkeit und Differenzierbarkeit von Funktionen. Sie haben wichtige Anwendungen und Beispiele verstanden und kennen die wesentlichen Eigenschaften und Konsequenzen dieser Begriffe.

Integrierter Erwerb von Schlüsselqualifikationen: Anhand des vermittelten Stoffes haben die Student(inn)en außerdem die Fähigkeit erworben, abstrakten mathematischen Schlüssen zu folgen und selbst rigorose Beweise zu führen.

Arbeitsaufwand:

Gesamt: 240 Std.

2 Std. Übung (Präsenzstudium)

4 Std. Vorlesung (Präsenzstudium)

Voraussetzungen:

Keine inhaltlichen Voraussetzungen.

Nome initialism verduese Langerin		
Angebotshäufigkeit: jedes Semester	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
	1 6.	1 Semester
sws:	Wiederholbarkeit:	
6	beliebig	

Modulteile

Modulteil: Analysis I

Lehrformen: Vorlesung, Übung

Sprache: Deutsch Arbeitsaufwand:

2 Std. Übung (Präsenzstudium)4 Std. Vorlesung (Präsenzstudium)

SWS: 6 **ECTS/LP**: 8.0

Inhalte:

Dieses Vorlesung behandelt unter anderem die reelle Analysis einer Unabhängigen:

Reelle Zahlen und Vollständigkeit

Komplexe Zahlen

Konvergenz und Divergenz bei Folgen und Reihen

Potenz- und Taylor-Reihen

Stetigkeitsbegriffe

Differential- und Integralrechnung einer Veränderlichen

(Teile des Stoffes können in die Analysis II ausgelagert werden und Stoffteile der Analysis II vorgezogen werden.)

Literatur:

Forster. O.: Analysis 1: Differential- und Integralrechnung einer Veränderlichen. Vieweg+Teubner.

Hildebrandt, S.: Analysis 1. Springer Verlag, 2005.

Königsberger, K.: Analysis 1. Springer Verlag, 2003.

Dieudonné, J.: Grundzüge der modernen Analysis. Vieweg Verlagsgesellschaft.

Edwards, H.M.: Advanced Calculus: A Differential Forms Approach

Lang, S.: Undergraduate Analysis

Lang, S.: Real and Functional Analysis

Zugeordnete Lehrveranstaltungen:

Analysis I (Vorlesung + Übung)

Dieses Vorlesung behandelt die Grundlagen der reellen Analysis und Integral- und Differentialrechnung in einer Variable. Themen sind unter anderem: * Mengenlehre und Aussagenlogik * Grundeigenschaften der natürlichen, rationalen und reellen Zahlen * komplexe Zahlen * Konvergenz und Divergenz bei Folgen und Reihen * Elementare Funktionen * stetige reellwertige Funktionen * Differential- und Integralrechnung einer Veränderlichen

Prüfung

Analysis I

Portfolioprüfung

Modul MTH-6000 (= BScGI_MFI1): Mathematik für Informatiker I

8 ECTS/LP

Version 1.1.0

Modulverantwortliche/r: apl. Prof. Dr. Dirk Hachenberger

Bemerkung:

Anstelle der Vorlesung Mathematik für Informatiker I kann die Vorlesung Lineare Algebra I eingebracht werden.

Arbeitsaufwand:

Gesamt: 240 Std.

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

Wiederholbarkeit:

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

30 Std. Übung (Präsenzstudium) 60 Std. Vorlesung (Präsenzstudium)

Voraussetzungen: Grundlagen der Schulmathematik		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: 1.	Minimale Dauer des Moduls: 1 Semester

siehe PO des Studiengangs

Modulteile

SWS:

6

Modulteil: Mathematik für Informatiker I (Vorlesung)

Lehrformen: Vorlesung

Dozenten: apl. Prof. Dr. Dirk Hachenberger

Sprache: Deutsch

SWS: 4

Inhalte:

- Grundbegriffe und Prinzipien zum Einstieg in die Mathematik
- Algebraische Grundstrukturen
- Elementare Zahlentheorie und einige Anwendungen
- Grundlagen der Linearen Algebra
- weitere algebraische Grundlagen und Zahlbereiche
- Ergänzung: Determinaten, charakteristisches Polynom

Modulteil: Mathematik für Informatiker I (Klausurenkurs)

Lehrformen: Vorlesung + Übung

Dozenten: apl. Prof. Dr. Dirk Hachenberger

Sprache: Deutsch

Angebotshäufigkeit: jedes Sommersemester

SWS: 2

Inhalte:

Hierbei handelt es sich um ein vorlesungsunabhängiges Prüfungsmodul zur Mathematik für Informatiker I, das im Sommersemester angeboten wird.

Prüfung

Mathematik für Informatiker I (Klausur)

Klausur / Prüfungsdauer: 180 Minuten

Modulteile

Modulteil: Mathematik für Informatiker I (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Modulteil: Mathematik für Informatiker I (Globalübung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Inhalte:

Die Globalübung dient der Ergänzung der Vorlesung. Hier werden die Lösungen zu den Hausaufgabenblättern besprochen, weitere Beispiele zum Vorlesungsstoff behandelt und dabei Überblicke über einzelne behandelte Themengebiete sowie Zusammenfassungen gegeben.

Modul MTH-6010 (= BScGI_MFI2): Mathematik für Informatiker II

8 ECTS/LP

Version 1.0.0

Modulverantwortliche/r: apl. Prof. Dr. Dirk Hachenberger

Bemerkung:

Anstelle der Vorlesung Mathematik für Informatiker II kann die Vorlesung Analysis I eingebracht werden.

Arbeitsaufwand:

Gesamt: 240 Std.

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

30 Std. Übung (Präsenzstudium)

60 Std. Vorlesung (Präsenzstudium)

Voraussetzungen:

Mathematik für Informatiker I

Modul Mathematik für Informatiker I (MTH-6000) - Pflicht

INOUGH Mathematik für informatiker i (M	111-0000) - FIIICH	
Angebotshäufigkeit: jedes	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
Sommersemester	2.	1 Semester
SWS:	Wiederholbarkeit:	
8	siehe PO des Studiengangs	

Modulteile

Modulteil: Mathematik für Informatiker II (Vorlesung)

Lehrformen: Vorlesung

Dozenten: apl. Prof. Dr. Dirk Hachenberger

Sprache: Deutsch

SWS: 4

Lernziele:

- Verständnis für die Axiomatik der reellen Zahlen, Abschätzungen.
- Sicherer Überblick über die wichtigsten elementaren Funktionen.
- Anwenden der Grenzwertsätze und Berechnung von Grenzwerten bei Folgen und Reihen sowie von Potenzreihen.
- · Analyse von differenzierbaren Funktionen und Anwenden der grundlegenden Integrationsregeln.

Schlüsselqualifikationen: Erweiterung und Vertiefung der in "Mathematik für Informatiker I" gewonnenen Kenntnisse und Fähigkeiten.

Inhalte:

- · Aufbau der reellen Zahlen
- Grundlagen der Analysis
- Reihen und Potenzreihen
- Stetige Funktionen
- · Differentialrechnung
- · Integralrechnung

Zugeordnete Lehrveranstaltungen:

Mathematik für Informatiker II (Vorlesung)

• Aufbau der reellen Zahlen: Die reellen Zahlen als vollständig angeordneter Körper, die komplexe Zahlen als bewertete Körper, Wurzeln. • Grundlagen der Analysis: Häufungspunkte, Grenzwerte und Wachstumsverhalten bei Folgen • Reihen und Potenzreihen: Konvergenzkriterien bei Reihen und Potenzreihen, Konvergenzradius, Faltung von (formalen) Potenzreihen, Geometrische un Harmonische Reihen. • Stetige Funktionen: Zwischenwertsatz,

Exponential-, Logarithmus- und trigonometrische Funktionen. • Differentialrechnung: Ableitungsregeln, Mittelwertsätze und Extremstellen, die Regeln von de l'Hopital, Taylor-Polynome, iterative Lösung von Gleichungen. • Integralrechnung: Riemann-Integral, Stammfunktionen, Integrationsregeln, uneigentliche Integrale.

Modulteil: Mathematik für Informatiker II (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Zugeordnete Lehrveranstaltungen:

Übung 01 Mathematik für Informatiker II (Übung)

Zum Begriff Übung gehören generell die folgenden Aspekte: • Aufarbeitung der Inhalte der Vorlesung, • Anwendung der Inhalte auf konkrete Probleme, • Lernen, mathematische Sachverhalte zu formulieren, • Förderung des strukturierten Denkens, • Lernen, Fragen zu stellen und Dinge zu hinterfragen. Im Rahmen einer Anfängervorlesung kann auf die Wichtigkeit einer Übung daher nicht häufig genug hingewiesen werden. Organisatorisch werden die Übungen so durchgeführt, dass zunächst die gesamten Teilnehmer auf kleinere überschaubare Übungsgruppen aufgeteilt werden, die jeweils zweistündig (einmal pro Woche) stattfinden und von studentischen bzw. wissenschaftlichen Hilfskräften (Tutoren) geleitet werden. In den Übungsgruppen werden Aufgaben mit aktuellem Bezug zur Vorlesung unter Anleitung der Tutoren selbständig bearbeitet. Im Rahmen der Übungen wird weiterhin wöchentlich ein Hausaufgabenblatt herausgegeben, welches innerhalb einer Woche schriftlich zu bearbeiten und abzugeben ist; dieses Übungsb

... (weiter siehe Digicampus)

Modulteil: Mathematik für Informatiker II (Globalübung)

Lehrformen: Übung **Sprache:** Deutsch

Angebotshäufigkeit: jedes Wintersemester

SWS: 2

Inhalte:

Die Globalübung dient der Ergänzung der Vorlesung.

Zugeordnete Lehrveranstaltungen:

Globalübung - Mathematik für Informatiker II

Die Globalübung dient der Ergänzung der Vorlesung. Hier werden die Lösungen zu den Hausaufgabenblättern besprochen, weitere Beispiele zum Vorlesungsstoff behandelt und dabei Überblicke über einzelne behandelte Themengebiete sowie Zusammenfassungen gegeben.

Modulteile

Modulteil: Mathematik für Informatiker II (Klausurenkurs)

Lehrformen: Übung

Dozenten: apl. Prof. Dr. Dirk Hachenberger

Sprache: Deutsch

Angebotshäufigkeit: jedes Wintersemester

SWS: 2

Inhalte:

Hierbei handelt es sich um ein vorlesungsunabhängiges Prüfungsmodul zur Mathematik für Informatiker II, das im Wintersemester angeboten wird.

Prüfung

Mathematik für Informatiker II (Klausur)

Klausur / Prüfungsdauer: 180 Minuten

Modul GEO-1004 (= BScGl_Gl): Geoinformatik	10 ECTS/LP
Geoinformatics	

Version 2.0.0 (seit SoSe15)

Modulverantwortliche/r: Prof. Dr. Sabine Timpf

Inhalte:

Dieses Modul bietet einen grundlegenden Überblick über die Methoden der geographischen Informationsverarbeitung, d.h. Datenerfassung, -verarbeitung, -analyse und -präsentation. Die zentralen Konzepte der Geoinformatik werden vorgestellt und mit Hilfe von Beispielen an der Tafel verständlich gemacht. Die Arbeitsweisen der Methoden werden in der Übung zur Vorlesung besprochen und sowohl der sprachliche Umgang mit dem Fachvokabular als auch die Anwendung der Methoden geübt. In der GIS-Übung werden Daten digitalisiert und in einer Karte dargestellt. Dabei wird ein GIS-Werkzeug eingeführt und genutzt (z.B. ArcGIS, QGIS, GRASS).

Lernziele/Kompetenzen:

Die Studierenden sind in der Lage

- 1. die wissenschaftlichen und praktischen Grundlagen der digitalen Verarbeitung geographischer Informationen widerzugeben und zu erläutern,
- 2. aktuelle Softwaresysteme, die Geodaten speichern, managen, analysieren und visualisieren, zu nennen und deren Eigenschaften zu erklären, sowie die grundlegenden Verarbeitungsmethoden (s.1.) zu erkennen,
- 3. Geodaten selbständig und in (den Daten) angemessener Form mit Hilfe aktueller Softwaresysteme zu verarbeiten (Grundlagen) sowie typische Produkte (Karte, GIS-Projekt) anzufertigen, sowie
- 4. die einem praktischen Problem angemessene Methode der Geodatenverarbeitung zu identifizieren und durchzuführen (bzw. deren Durchführung zu leiten).

Schlüsselqualifikationen: Abstraktionsfähigkeit, GIS-Anwendung (Einsatz neuer Medien), Arbeiten mit Lehrbüchern und englischsprachiger Literatur

Bemerkung:

Zu belegende Veranstaltungen im Digicampus:

- 1. Vorlesung Geoinformatik (nur WS)
- 2. Übung zur Geoinformatik (nur WS, parallel zur Vorlesung)
- 3. GIS-Übung (jedes Semester, ein halbes Semester lang)

Arbeitsaufwand:

Gesamt: 300 Std.

60 Std. Übung (Präsenzstudium)

30 Std. Vorlesung (Präsenzstudium)

60 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

120 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: 1.	Minimale Dauer des Moduls: 1 Semester
sws : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Geoinformatik I (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 2

Inhalte:

Die Vorlesung bietet einen grundlegenden Überblick über die Methoden der geographischen Informationsverarbeitung, d.h. Datenerfassung, -verarbeitung, -analyse und -präsentation. Die zentralen Konzepte der Geoinformatik werden vorgestellt und mit Hilfe von Beispielen verständlich gemacht.

Literatur:

· Heywood et al: Introduction to Geographic Information Systems

de Lange: GeoinformatikBartelme: Geoinformatik

· Worboys and Duckham: GIS: A computational perspective

Modulteil: Übungen zu Geoinformatik I

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Inhalte:

In der Übung werden die Arbeitsweisen der Methoden besprochen und sowohl der sprachliche Umgang mit dem Fachvokabular sowie die Anwendung der Methoden geübt.

Modulteil: GIS-Übung Lehrformen: Übung Sprache: Deutsch

Angebotshäufigkeit: jedes Semester vorlesungsfreie Zeit Blockkurs

SWS: 2

Inhalte:

In der GIS-Übung werden Daten digitalisiert und in einer Karte dargestellt. Dabei wird ein GIS-Werkzeug eingeführt und genutzt.

Zugeordnete Lehrveranstaltungen:

Übung zu GIS/Kartographie (Gruppe 1) (Übung)

Einführung in die Digitalisierung, Kartenerstellung und Analyse mit ArcGIS zur Vertiefung und praktischen Anwendung der Inhalte der Vorlesung Kartographie I bzw. zur Einführung in das praktische Arbeiten mit einem geographischen Informationssystem. Der Kurs verwendet die Unterlagen des E-GIS Kurses. Die Übung wird durch einen/eine TutorIn angeleitet.

Übung zu GIS/Kartographie (Gruppe 2) (Übung)

Einführung in die Digitalisierung, Kartenerstellung und Analyse mit ArcGIS zur Vertiefung und praktischen Anwendung der Inhalte der Vorlesung Kartographie I bzw. zur Einführung in das praktische Arbeiten mit einem geographischen Informationssystem. Der Kurs verwendet die Unterlagen des E-GIS Kurses. Die Übung wird durch einen/eine TutorIn angeleitet.

Übung zu GIS/Kartographie (Gruppe 3 - ab 14.6.2017) (Übung)

Einführung in die Digitalisierung, Kartenerstellung und Analyse mit ArcGIS zur Vertiefung und praktischen Anwendung der Inhalte der Vorlesung Kartographie I bzw. zur Einführung in das praktische Arbeiten mit einem geographischen Informationssystem. Der Kurs verwendet die Unterlagen des E-GIS Kurses. Die Übung wird durch einen/eine TutorIn angeleitet.

Übung zu GIS/Kartographie (Gruppe 4 - ab 14.6.2017) (Übung)

Einführung in die Digitalisierung, Kartenerstellung und Analyse mit ArcGIS zur Vertiefung und praktischen Anwendung der Inhalte der Vorlesung Kartographie I bzw. zur Einführung in das praktische Arbeiten mit einem geographischen Informationssystem. Der Kurs verwendet die Unterlagen des E-GIS Kurses. Die Übung wird durch einen/eine TutorIn angeleitet.

Prüfung

GI_GI Geoinformatik (10 LP)

Klausur / Prüfungsdauer: 90 Minuten

Beschreibung:

Die Klausur wird jedes Semester angeboten (d.h. im Februar sowie im Juli) jeweils in der zweiten oder dritten Prüfungswoche.

Modul GEO-1015 (= BScGl_KF): Kartographie und Fernerkundung

10 ECTS/LP

Cartography and Remote Sensing

Version 2.0.0 (seit WS15/16)

Modulverantwortliche/r: PD Dr. Andreas Philipp

Inhalte

Die Vorlesung Kartographie beinhaltet begriffliche und geschichtliche Grundlagen der Kartographie, führt in Kartenprojektionen und Koordinatensysteme ein, behandelt Grundlagen der Vermessung und kartographischen Darstellung sowie der Interpretation topographischer Karten. Die Vorlesung Fernerkundung führt ein in Grundlagen, Sensorik und Plattformen der Fernerkundung. Weiterführend werden Algorithmen und Datenstrukturen zur Weiterverarbeitung und Interpretation von Fernerkundungsdaten vorgestellt.

Lernziele/Kompetenzen:

Nach dem Besuch dieses Moduls sind die Studierenden in der Lage die theoretischen Grundlagen der Kartographie und Fernerkundung darzustellen. Sie können die Prinzipien von Kartenprojektion und Koordinatensystemen erklären und anwenden und sind in der Lage eine topographische Karte zu planen, zu gestalten und zu interpretieren. Die Studierenden sind in der Lage die Eignung verschiedenartiger Fernerkundungssensoren und ihrer Daten für geographische Fragestellungen zu differenzieren und wichtige Methoden der Dateninterpretation zu erklären und zu beurteilen.

Arbeitsaufwand:

Gesamt: 300 Std.

120 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

120 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

60 Std. Vorlesung (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Sommersemester	Empfohlenes Fachsemester: 2.	Minimale Dauer des Moduls: 1 Semester
SWS : 4	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Kartographie (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 2

Inhalte:

Die Vorlesung Kartographie führt in das Thema ein, d.h grundlegender Überblick über die Konzepte und Methoden, die zur Erstellung und Verwendung einer Karte notwendig sind: Referenz- und Koordinatensysteme, Kartenabbildungen, Symbolisierung, Kartengestaltung, Kartennutzung, thematische Kartographie.

Literatur:

- Slocum T.A. et al.: Thematic Cartography and Geovisualization, Perason Verlag, ISBN 0138010064
- Hake, Grünreich, Meng: Kartographie, de Gruyter Verlag (Lehrbibliothek)

Zugeordnete Lehrveranstaltungen:

Kartographie 1 (Vorlesung)

Modulteil: Fernerkundung

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 2

Inhalte:

Die Vorlesung Fernerkundung bietet einen Überblick über die Sensoren und Plattformen, die Daten der Erdoberfläche erfassen. In der Vorlesung werden Algorithmen und Datenstrukturen zur Weiterverarbeitung dieser Daten vorgestellt.

Literatur:

Albertz, J.: Einführung in die Fernerkundung, WBG Verlag (Lehrbibliothek)

Zugeordnete Lehrveranstaltungen:

Einführung in die geographische Fernerkundung (Vorlesung)

Prüfung

GI_KAFE Kartographie und Fernerkundung

Klausur / Prüfungsdauer: 90 Minuten

Beschreibung:

Die Klausur besteht aus einem Teil Kartographie und einem Teil Fernerkundung, die zum gleichen Zeitpunkt geschrieben und bewertet werden. Bei Nichtbestehen muss die gesamte Klausur wiederholt werden; das Absolvieren einer Teilprüfung ist nicht möglich. Die Klausur wird jedes Semester angeboten (d.h. im Februar sowie im Juli) jeweils in der zweiten oder dritten Prüfungswoche.

Modul GEO-3081 (= BScGI_AGI): Angewandte Geoinformatik

10 ECTS/LP

Applied Geoinformatics

Version 2.0.0 (seit WS15/16)

Modulverantwortliche/r: Prof. Dr. Jukka Krisp

Lernziele/Kompetenzen:

Nach Besuch dieses Moduls können Studierende ein Anwendungsproblem aus dem Bereich der Geoinformatik analysieren und dessen Struktur verstehen. Sie sind in der Lage eine Lösung in Zusammenarbeit mit dem Nutzer/Anwender/Auftraggeber zu erarbeiten Dabei unterscheiden sie Konzepte zu Geodate und Methoden zur Modellierung oder Analyse. Sie können verschiedene Lösungswege vorschlagen und deren Unterschiede in der Umsetzung und in der Nutzung kritisch betrachten sowie deren Aufwand abschätzen. Ziel ist es die Studierenden in die Lage zu versetzen, die einzelnen Teilbereiche der Geoinformatik im Rahmen einer Anwendung in einem Zusammenhang zu sehen und alternative Lösungsmöglichkeiten eines Problems fundiert zu beurteilen.

Arbeitsaufwand:

Gesamt: 300 Std.

30 Std. Seminar (Präsenzstudium)

30 Std. Teilnahme an Lehrveranstaltungen (Präsenzstudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

30 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

Voraussetzungen:		ECTS/LP-Bedingungen:
Die folgenden Grundlagenmodule müssen bestanden sein: Geoinformatik,		Aktive Mitarbeit, Seminararbeit oder
Kartographie und Fernerkundung, Informatik I und II, Programmierkurs,		mündl. Prüfung
Humangeographie I und II, Physische Geographie I und II.		
Angebotshäufigkeit: jedes Semester	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
	5 8.	1 Semester
sws:	Wiederholbarkeit:	
4	siehe PO des Studiengangs	

Modulteile

Modulteil: Arbeitsmethoden der Geoinformatik

Lehrformen: Übung

Sprache: Deutsch / Englisch

SWS: 2 ECTS/LP: 5.0

Inhalte:

Die Inhalte dieser Veranstaltung richten sich nach den aktuellen Projektangeboten im Projektseminar. Sie dient der vertiefenden Vermittlung von Arbeitsmethoden der Geoinformatik als Vorbereitung oder im Tandem mit dem Projektseminar.

Literatur:

Je nach Kurswahl wird Literatur abgegeben.

Zugeordnete Lehrveranstaltungen:

3D und Spatial Analyst (Block 6.-8.4.2017) (Übung)

Blockkurs vom 6.-8.4. Donnerstag bis Samstag inklusive

Datenanalyse mit Python (Übung)

u.a. Freier Bereich LPO 2008

Räumliche Analyse (Übung)

Modulteil: Projektseminar Geoinformatik

Lehrformen: Projektseminar

Sprache: Deutsch

Angebotshäufigkeit: jedes Sommersemester

SWS: 2 **ECTS/LP**: 5.0

Inhalte:

Die Inhalte dieser Veranstaltung richten sich nach den aktuellen Projektangeboten. Angedacht sind zum Beispiel: Einsatz von Laserscanning zur Denkmalpflege (Zusammenarbeit mit dem Denkmalamt), Aufbau eines Freizeitplaners mit ÖPNV Plugin für Smartphones, Erstellung eines Biotopkatasters in der Stadt Augsburg, Berechnung der Wege der minimalen Exposition zur Reduktion von Krankheiten durch Luftschafstoffe, Implementierung eines kognitiven Modells für die Wegfindung in Robotern.

Literatur:

Je nach Kurswahl wird Literatur abgegeben.

Zugeordnete Lehrveranstaltungen:

Navigation mit Landmarken (Seminar)

Prüfung

GI_AGI Angewandte Geoinformatik

Portfolioprüfung, mündl. Prüfung oder Projektarbeit

Modul GEO-3096 (= BScGl_GS): Geostatistik (BScGl)

12 ECTS/LP

Geostatistics

Version 2.0.0 (seit WS15/16)

Modulverantwortliche/r: PD Dr. Christoph Beck

Inhalte:

Die Vorlesung führt in grundlegende Konzepte und Methoden der uni- und bivariaten Statistik, mit besonderer Berücksichtigung geographischer Fragestellungen, ein (deskriptive Statistik, Wahrscheinlichkeitsrechnung, theoretische Verteilungen, Wahrscheinlichkeitsrechnung, Hypothesenprüfung und Signifikanz, Statistische Test- und Prüfverfahren, Varianzanalyse, bivariate Korrelations- und Regressionsanalyse). In der begleitenden Übung wird der Stoff der Vorlesung anhand praktischer Beispiele vertieft. Dabei erfolgt die Einführung in die selbständige statistische Analyse geowissenschaftlicher Datensätze (z.B. Messungen, Analysen, selbst erhobene Daten, Modelldaten), unter Verwendung adäquater Softwarepakete (R bzw. SPSS).

Lernziele/Kompetenzen:

Nach Abschluss dieses Moduls kennen die Studierenden die Grundbegriffe der Statistik, sie haben einen Überblick über grundlegende Konzepte und Methoden der uni- und bivariaten Statistik. Sie sind in der Lage, wichtige Verfahren zur statistischen Datenanalyse in den Geowissenschaften zu erklären und deren spezifische Anwendungsmöglichkeiten zu erläutern. Sie können selbständig adäquate Verfahrensweisen zur statistischen Analyse geowissenschaftlicher Datensätze auswählen, diese praktisch, mittels Einsatz entsprechender Softwarepakete (z.B. R, SPSS), anwenden, zutreffende Schlussfolgerungen ziehen und die Ergebnisse problembezogen interpretieren.

Zu belegende Veranstaltungen:

- · Geostatistik Vorlesung (nur WS)
- Geostatistik Übung (nur WS)
- Seminar Geostatistik für Fortgeschrittene (nur SS)

Schlüsselqualifikationen: Analytisch-methodische Kompetenz; Abwägen von Lösungsansätzen; Abstraktionsfähigkeit; Training des logischen Denkens; eigenständiges Arbeiten mit Lehrbüchern und englischsprachiger Fachliteratur; Grundsätze guter wissenschaftlicher Praxis; Präsentation komplexer Sachverhalte

Bemerkung:

Bitte laden Sie sich das **Portfolio** von den Seiten der Geographie (Studierende -> Prüfungen -> Portfolios) herunter. Lassen Sie die zwei Noten auf dem Portfoliozettel eintragen und unterschreiben. Erst in dem Semester in StudIS zur Prüfung des Moduls anmelden, in dem Sie voraussichtlich die letzte Note bekommen werden.

Zur Anmeldung bei der Klausur Geostatistik kontaktieren Sie bitte einen der Dozierenden.

Arbeitsaufwand:

Gesamt: 360 Std.

30 Std. Übung (Präsenzstudium)

30 Std. Vorlesung (Präsenzstudium)

30 Std. Seminar (Präsenzstudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

120 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jährlich	.	Minimale Dauer des Moduls: 2 Semester
SWS : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Geostatistik (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

Angebotshäufigkeit: jedes Wintersemester

SWS: 2

Literatur:

• Bahrenberg G., Giese E., Mevenkamp N., Nipper J. (2010): Statistische Methoden in der Geographie Band 1: Univariate und Bivariate Statistik. Borntraeger.

• Bahrenberg G., Giese E., Nipper J. (2003): Statistische Methoden in der Geographie Band 2: Multivariate Statistik. Borntraeger.

Modulteil: Geostatistik (Übung)

Lehrformen: Übung **Sprache:** Deutsch

Angebotshäufigkeit: jedes Wintersemester

SWS: 2

Modulteil: Seminar Geostatistik für Fortgeschrittene

Lehrformen: Seminar **Sprache:** Deutsch

Angebotshäufigkeit: halbjährlich

SWS: 2

Lernziele:

Vertiefende Methoden der Geostatistik

Literatur:

Wird in der Veranstaltung angegeben.

Zugeordnete Lehrveranstaltungen:

Data mining (English) (Block probably in July 2017) (Seminar)

Blockveranstaltung Ende Juli 2017 von Jean Mazimpaka

Geostatistik für Fortgeschrittene (Mahne-Bieder) (Vorlesung + Übung)

nicht für MSc KU

Geostatistik für Fortgeschrittene Vorlesung (Jacobeit) und Übung (Philipp) (Vorlesung + Übung)

Vorlesung findet (i.d.R.) zweiwöchentlich statt - beachten Sie die genauen Termine! Wählen Sie bitte EINE der drei Übungen zur Ergänzung der Vorlesung! Übung 1 (im Wechsel mit der Vorlesung) (Do 8:15) Übung 2 oder Übung 3 (Do 10:00) VL+Ü = gesamt 2 SWS

Prüfung

GI_GS Portfolio GI_GS

Modulprüfung

Modul GEO-1009 (= BScGl_HG1): Humangeographie I Human Geography I

10 ECTS/LP

Version 2.0.0 (seit WS15/16)

Modulverantwortliche/r: Dipl.-Geogr. Serge Middendorf

Inhalte:

1: Stadt-, Kultur- und Wirtschaftsgeographie: zentrale Fragestellungen, theoretische Grundkonzeptionen, Modelle sowie forschungs- und anwendungsseitige Bezüge, Stadtentwicklung, Stadt im Zeitalter der Globalisierung, Megapolisierung, Städtesysteme, Transformationsprozesse Moderne - Postmoderne, Kulturbegriff in der Geographie, new cultural geography, regionale Wachstums- und Entwicklungstheorien, Disparitäten, globale Wertschöpfungsketten, Kritikalitätsbetrachtung von Ressourcenkreisläufen, Einzelhandelsentwicklung und Konsumforschung, praktische Anwendungsbezüge zu Standort- und Wirtschaftspolitik sowie Wirtschaftsförderung

2: Vertiefung und Ergänzung der Inhalte der Vorlesung im Proseminar

Lernziele/Kompetenzen:

Nach Abschluss dieses Moduls haben die Studierenden strukturierte Kenntnisse über zentrale Themengebiete und Fragestellungen, Konzepte, Modelle und Methoden der Stadt-, Kultur- und Wirtschaftgeographie. Sie verfügen über Kenntnisse und Verständnis in diesen Teilbereichen und können dieses Wissen anwenden, Inhalte vergleichen, Sachverhalte umschreiben, gegenüberstellen und erklären. Sie sind in der Lage, klassische Fragestellungen aus Teilgebieten der Humangeographie mit dem korrekten Fachvokabular zu klassifizieren, zu analysieren und Lösungsansätze für Probleme aus diesen Themenbereichen in einzelnen Fällen zu schlussfolgern.

Schlüsselqualifikationen: Fertigkeit zur verständlichen Darstellung und Dokumentation von Fachinhalten im Proseminar, grundlegender Umgang mit Fachliteratur.

Arbeitsaufwand:

Gesamt: 300 Std.

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

60 Std. Vorlesung (Präsenzstudium)

150 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		ECTS/LP-Bedingungen: Prüfungsleistung: Klausur
		Studienleistung: Teilnahme und aktive Mitarbeit, Referat und Hausarbeit im Proseminar.
		Hinweis: Plagiat in der Hausarbeit führt zum direkten Ausschluss vom Modul - eine Prüfungsteilnahme ist dann nicht möglich.
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 1.	Minimale Dauer des Moduls: 1 Semester
SWS : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Humangeographie I (Vorlesung)

Lehrformen: Vorlesung

Dozenten: Prof. Dr. Karin Thieme, PD Dr. Markus Hilpert

Sprache: Deutsch

SWS: 4

Inhalte:

Stadt-, Kultur- und Wirtschaftsgeographie: zentrale Fragestellungen, theoretische Grundkonzeptionen, Modelle sowie forschungs- und anwendungsseitige Bezüge, Stadtentwicklung, Stadt im Zeitalter der Globalisierung, Megapolisierung, Städtesysteme, Transformationsprozesse Moderne - Postmoderne, Kulturbegriff in der Geographie, new cultural geography, regionale Wachstums- und Entwicklungstheorien, Disparitäten, globale Wertschöpfungsketten, Kritikalitätsbetrachtung von Ressourcenkreisläufen, Einzelhandelsentwicklung und Konsumforschung, praktische Anwendungsbezüge zu Standort- und Wirtschaftspolitik sowie Wirtschaftsförderung

Literatur:

Gebhardt H., Glaser R., Radtke U., Reuber P. (Hg.)(2016): Geographie: Physische Geographie und Humangeographie. 2. Aufl. Heidelberg.

Modulteil: Humangeographie I (Proseminar)

Lehrformen: Proseminar **Sprache:** Deutsch

SWS: 2

Lernziele:

Die Studierenden sind in der Lage, ein umgrenztes humangeographisches Thema eigenständig aufzuarbeiten und mit Hilfe von wissenschaftlicher Literatur zu vertiefen. Sie können Texte in ihren Keraussagen analysieren, den argumentativen Aufbau identifizieren, disziplingeschichtlich einordnen, präsentieren und interpretieren. Sie können eine eigenständige Argumentation entwickeln und in Form einer Hausarbeit unter Beachtung der Regeln wissenschaftlichen Arbeitens schriftlich darlegen.

Inhalte:

Es werden Inhalte aus der Pflichtvorlesung aufgegriffen sowie vertieft und ergänzend behandelt.

Literatur

Gebhardt H., Glaser R., Radtke U., Reuber P. (Hg.)(2016): Geographie: Physische Geographie und Humangeographie. 2. Aufl. Heidelberg.

Prüfung

HGI 10 Humangeographie I (10 LP)

Klausur / Prüfungsdauer: 90 Minuten

Modul GEO-1012 (= BScGl_HG2): Humangeographie II Human Geography II

Version 2.0.0 (seit WS15/16)

Modulverantwortliche/r: Dipl.-Geogr. Serge Middendorf

Inhalte:

- 1. Bevölkerung und Migration, Gesellschaft und Umwelt, Raum und Macht, Geographien des Globalen Südens; zentrale Fragestellungen, theoretische Grundkonzeptionen, Modelle sowie forschungs- und anwendungsrelevante Bezüge; Bevölkerungszusammensetzung, -verteilung und -dynamik, demographische Transformationsprozesse, Migrationsphänomene und -theorien, Ressourcengeographie, Politische Ökologie, Risikoforschung, Tourismus, Umweltpolitik, Perspektiven der Politischen Geographie, Governance, Territorien und Grenzen, Konfliktforschung, Entwicklungsbegriff, -indikatoren und -theorien, Post Colonial Studies, Post Development, Theorien mittlerer Reichweite, Ernährungssicherung.
- 2. Vertiefung und Ergänzung der Inhalte der Vorlesung im Proseminar.

Lernziele/Kompetenzen:

Nach Abschluss dieses Moduls haben die Studierenden strukturierte Kenntnisse über zentrale Themengebiete und Fragestellungen, Konzepte, Modelle und Methoden der Bevölkerungs- und Politischen Geographie sowie der Gesellschaft-Umwelt-Forschung und der Geographischen Entwicklungsforschung. Sie verfügen über Kenntnisse und Verständnis in diesen Teilbereichen und können dieses Wissen anwenden, Inhalte vergleichen, Sachverhalte umschreiben, gegenüberstellen und erklären. Sie sind in der Lage, klassische Fragestellungen aus Teilgebieten der Humangeographie mit dem korrekten Fachvokabular zu klassifizieren, zu analysieren und Lösungsansätze für Probleme aus diesen Themenbereichen in einzelnen Fällen zu schlussfolgern.

Schlüsselqualifikationen: Fertigkeit zur verständlichen Darstellung und Dokumentation von Fachinhalten im Proseminar, grundlegender Umgang mit Fachliteratur.

Arbeitsaufwand:

Gesamt: 300 Std.

60 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

30 Std. Seminar (Präsenzstudium)

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

60 Std. Vorlesung (Präsenzstudium)

Voraussetzungen: keine		ECTS/LP-Bedingungen: Prüfungsleistung: Klausur
		Studienleistung: Teilnahme und aktive Mitarbeit, Referat und Hausarbeit im Proseminar.
		Hinweis: Plagiat in der Hausarbeit führt zum direkten Ausschluss vom Modul - eine Prüfungsteilnahme ist dann nicht möglich.
Angebotshäufigkeit: jedes Sommersemester	Empfohlenes Fachsemester:	Minimale Dauer des Moduls: 1 Semester
SWS : 6	Wiederholbarkeit: siehe PO des Studiengangs	

10 ECTS/LP

Modulteile

Modulteil: Humangeographie II (Vorlesung)

Lehrformen: Vorlesung

Dozenten: Prof. Dr. Matthias Schmidt, Dr. Andreas Benz

Sprache: Deutsch

SWS: 4

Inhalte:

1. Bevölkerung und Migration, Gesellschaft und Umwelt, Raum und Macht, Geographien des Globalen Südens; zentrale Fragestellungen, theoretische Grundkonzeptionen, Modelle sowie forschungs- und anwendungsrelevante Bezüge; Bevölkerungszusammensetzung, -verteilung und -dynamik, demographische Transformationsprozesse, Migrationsphänomene und -theorien, Ressourcengeographie, Politische Ökologie, Risikoforschung, Tourismus, Umweltpolitik, Perspektiven der Politischen Geographie, Governance, Territorien und Grenzen, Konfliktforschung, Entwicklungsbegriff, -indikatoren und -theorien, Post Colonial Studies, Post Development, Theorien mittlerer Reichweite, Ernährungssicherung.

Literatur:

Gebhardt H., Glaser R., Radtke U., Reuber P. (Hg.)(2016): Geographie: Physische Geographie und Humangeographie. 2. Aufl. Heidelberg.

Zugeordnete Lehrveranstaltungen:

Grundkursvorlesung Humangeographie 2 (Vorlesung)

Modulteil: Humangeographie II (Proseminar)

Lehrformen: Proseminar **Sprache:** Deutsch

SWS: 2

Lernziele:

Die Studierenden sind in der Lage, ein umgrenztes humangeographisches Thema eigenständig aufzuarbeiten und mit Hilfe von wissenschaftlicher Literatur zu vertiefen. Sie können Texte in ihren Kernaussagen analysieren, den argumentativen Aufbau identifizieren, disziplingeschichtlich einordnen, präsentieren und interpretieren. Sie können eine eigenständige Argumentation entwickeln und in Form einer Hausarbeit unter Beachtung der Regeln wissenschaftlichen Arbeitens schriftlich darlegen.

Inhalte:

Es werden Inhalte aus der Pflichtvorlesung aufgegriffen sowie vertieft und ergänzend behandelt.

Literatur

Gebhardt H., Glaser R., Radtke U., Reuber P. (Hg.)(2016): Geographie: Physische Geographie und Humangeographie. 2. Aufl. Heidelberg.

Zugeordnete Lehrveranstaltungen:

Proseminar zur Vorlesung: Humangeographie 2 (Benz 1) (Proseminar)

Proseminar zur Vorlesung: Humangeographie 2 (Benz 2) (Proseminar)

Proseminar zur Vorlesung: Humangeographie 2 (Hatz) (Proseminar)

Proseminar zur Vorlesung: Humangeographie 2 (Middendorf 1) (Proseminar)

Proseminar zur Vorlesung: Humangeographie 2 (Middendorf 2) (Proseminar)

Proseminar zur Vorlesung: Humangeographie 2 (Purwins) (Proseminar)

Proseminar zur Vorlesung: Humangeographie 2 (Simkin 1) (Proseminar)

Proseminar zur Vorlesung: Humangeographie 2 (Simkin 2) (Proseminar)

Proseminar zur Vorlesung: Humangeographie 2 (Völkening 1) (Proseminar)

Proseminar zur Vorlesung: Humangeographie 2 (Völkening 2) (Proseminar)

Prüfung

HGII 10 Humangeographie II (10 LP)

Klausur / Prüfungsdauer: 90 Minuten

Modul GEO-1017 (= BScGl_PG1): Physische Geographie I Physical Geography I

10 ECTS/LP

Version 2.1.0 (seit WS15/16)

Modulverantwortliche/r: Dr. Ulrike Beyer

Inhalte:

Gegenstand der Pflichtvorlesung sind die Grundlagen der physisch-geographischen Teilgebiete Klimatologie, Hydrogeographie und Geomorphologie. Im begleitenden Proseminar, das in mehrfachen Parallelkursen angeboten wird, werden Inhalte aus der Pflichtvorlesung aufgegriffen und ergänzend behandelt. Eigenständige Erarbeitung oder Vertiefung eines umgrenzten Stoffbereichs anhand von wissenschaftlicher Literatur. Verfassen eines wissenschaftlich fundierten Berichts in Form einer Hausarbeit sowie deren Präsentation im Proseminar.

Lernziele/Kompetenzen:

Nach Abschluss dieses Moduls haben die Studierenden einen Überblick über die ersten drei Teilgebiete der Physischen Geographie und kennen die grundlegenden Begriffe, Konzepte, Modelle und Methoden der Klimatologie, Hydrogeographie Geomorphologie. Sie besitzen erweitertes Fachwissen in einem dieser Teilbereiche und können dieses Fachwissen schriftlich und mündlich kommunizieren. Sie sind in der Lage, charakteristische Fragestellungen der Physischen Geographie mit dem korrekten Fachvokabular zu bearbeiten und die Lösungsansätze für Probleme aus diesen Themenbereichen in einzelnen Fällen zu erläutern.

Arbeitsaufwand:

Gesamt: 300 Std.

30 Std. Seminar (Präsenzstudium)

60 Std. Vorlesung (Präsenzstudium)

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

Voraussetzungen: keine		ECTS/LP-Bedingungen: Prüfungsleistung: Klausur
		Studienleistung: Teilnahme und aktive Mitarbeit, Referat und Hausarbeit im Proseminar.
		Hinweis: Plagiat in der Hausarbeit
		führt zum direkten Ausschluss vom
		Modul - eine Prüfungsteilnahme ist
		dann nicht möglich.
Angebotshäufigkeit: jedes	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
Wintersemester	ab dem 1.	1 Semester
SWS:	Wiederholbarkeit:	
6	siehe PO des Studiengangs	

Modulteile

Modulteil: Physische Geographie I (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

Gegenstand der Pflichtvorlesung sind die Grundlagen der physisch-geographischen Teilgebiete Klimatologie, Hydrogeographie und Geomorphologie. Im begleitenden Proseminar, das in mehrfachen Parallelkursen angeboten wird, werden Inhalte aus der Pflichtvorlesung aufgegriffen und ergänzend behandelt.

Literatur:

Weischet, W. & W.Endlicher (2012): Einführung in die Klimatologie. 8. Aufl. Borntraeger. Berlin-Stuttgart.

Zepp, H. (2014): Geomorphologie. 6. Aufl. UTB. Paderborn.

Fohrer, N. et al. (2016): Hydrologie. UTB basics, Stuttgart.

Gebhardt H., Glaser R., Radtke U., Reuber P. (Hg.)(2016): Geographie: Physische Geographie und Humangeographie. 2. Aufl. Heidelberg.

Modulteil: Physische Geographie I (Proseminar)

Lehrformen: Proseminar

Sprache: Deutsch

SWS: 2

Lernziele:

Eigenständige Aufarbeitung und Vertiefung eines umgrenzten Stoffbereichs anhand von wissenschaftlicher Literatur. Verfassen eines wissenschaftlich fundierten Berichts in Form einer Hausarbeit sowie Präsentation der Inhalte der Hausarbeit vor Kollegen. Nachweis des wissenschaftlichen Arbeitens.

Inhalte:

Es werden Inhalte aus der Pflichtvorlesung aufgegriffen und ergänzend behandelt.

Prüfung

PGI 10 Physische Geographie I (10LP)

Klausur / Prüfungsdauer: 90 Minuten

Modul GEO-1020 (= BScGl_PG2): Physische Geographie II Physical Geography II

10 ECTS/LP

Version 2.1.0 (seit WS15/16)

Modulverantwortliche/r: Dr. Ulrike Beyer

Inhalte:

Gegenstand der Pflichtvorlesung sind die Grundlagen der physisch-geographischen Teilgebiete Bodengeographie, Biogeographie und geoökologische Zonen der Erde. Im begleitenden Proseminar, das in mehrfachen Parallelkursen angeboten wird, werden Inhalte aus der Pflichtvorlesung aufgegriffen und ergänzend behandelt. Eigenständige Erarbeitung oder vertiefung eines umgrnzten Stoffbereichs anhand von wissenschaftlicher Literatur. Verfassen eines wissenschaftlich fundierten Berichts in Form einer Hausarbeit sowie deren Präsentation im Proseminar.

Lernziele/Kompetenzen:

Nach Abschluss dieses Moduls haben die Studierenden einen Überblick über die zweiten drei Teilgebiete der Physischen Geographie und kennen die grundlegenden Begriffe, Konzepte, Modelle und Methoden der Bodenkunde, Biogeographie sowie der Geoökologischen Zonen der Erde. Sie besitzen erweitertes Fachwissen in einem dieser Teilbereiche und können dieses Fachwissen schriftlich und mündlich kommunizieren. Sie sind in der Lage, charakteristische Fragestellungen der Physischen Geographie mit dem korrekten Fachvokabular zu bearbeiten und die Lösungsansätze für Probleme aus diesen Themenbereichen in einzelnen Fällen zu erläutern.

Arbeitsaufwand:

Gesamt: 300 Std.

30 Std. Seminar (Präsenzstudium)

60 Std. Vorlesung (Präsenzstudium)

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

Voraussetzungen: keine		ECTS/LP-Bedingungen: Prüfungsleistung: Klausur
		Studienleistung: Teilnahme und aktive Mitarbeit, Referat und Hausarbeit im Proseminar. Hinweis: Plagiat in der Hausarbeit führt zum direkten Ausschluss vom
		Modul - eine Prüfungsteilnahme ist dann nicht möglich.
Angebotshäufigkeit: jedes Sommersemester	Empfohlenes Fachsemester:	Minimale Dauer des Moduls: 1 Semester
SWS : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Physische Geographie II (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

Gegenstand der Pflichtvorlesung sind die Grundlagen der physisch-geographischen Teilgebiete Bodengeographie, Biogeographie und geoökologische Zonen der Erde.

Literatur:

Gebhardt H., Glaser R., Radtke U., Reuber P. (Hg.)(2016): Geographie: Physische Geographie und Humangeographie. 2. Aufl. Heidelberg.

Scheffer, F. & P. Schachtschabel (2010): Lehrbuch der Bodenkunde. 16. Aufl. Spektrum. 569 S.

Glawion, R. et al. (2012): Biogeographie. Westermann. 400 S.

Schultz, J. (2010): Ökozonen. UTB. 128 S.

Zugeordnete Lehrveranstaltungen:

Grundkursvorlesung Physische Geographie 2 (Vorlesung)

Modulteil: Proseminar Physische Geographie II

Lehrformen: Proseminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Im begleitenden Proseminar, das in mehrfachen Parallelkursen angeboten wird, werden Inhalte aus der Pflichtvorlesung aufgegriffen und ergänzend behandelt.

Zugeordnete Lehrveranstaltungen:

Proseminar zur Vorlesung: Physische Geographie 2 (Beck) (Proseminar)

Proseminar zur Vorlesung: Physische Geographie 2 (Beyer) (Proseminar)

Proseminar zur Vorlesung: Physische Geographie 2 (Dötterl) (Proseminar)

Proseminar zur Vorlesung: Physische Geographie 2 (Homann 1) (Proseminar)

Proseminar zur Vorlesung: Physische Geographie 2 (Homann 2) (Proseminar)

Proseminar zur Vorlesung: Physische Geographie 2 (Kaspar) (Proseminar)

Proseminar zur Vorlesung: Physische Geographie 2 (Petersen 1) (Proseminar)

Proseminar zur Vorlesung: Physische Geographie 2 (Petersen 2) (Proseminar)

Proseminar zur Vorlesung: Physische Geographie 2 (Rathmann) (Proseminar)

Proseminar zur Vorlesung: Physische Geographie 2 (Weishaupt) (Proseminar)

Prüfung

PGII 10 Physische Geographie II (10 LP)

Klausur / Prüfungsdauer: 90 Minuten

Modul GEO-3080 (= BScGl_ATG): Aktuelle Themen der Geoinformatik

6 ECTS/LP

Selected topics in geoinformatics

Version 2.0.0 (seit WS15/16)

Modulverantwortliche/r: Prof. Dr. Sabine Timpf

Inhalte:

Das Modul besteht aus einer Veranstaltung.

Lernziele/Kompetenzen:

Nach Besuch dieses Moduls kennen die Studierenden die aktuelle Literatur zum Themengebiet und können die Fortschritte der Forschung im Vergleich zu den Grundlagen erkennen. Sie sind in der Lage ein spezielles Teilgebiet schriftlich und mündlich zu vertreten sowie die Erkenntnisse daraus anzuwenden. Sofern Software zum Thema existiert, kennen Sie die Vor- und Nachteile und damit deren Einsatzmöglichkeiten. Sie haben mit der Software ein Teilgebiet bearbeitet und können die Ergebnisse wissenschaftlich einordnen.

Schlüsselqualifikationen: Kommunikationsfähigkeit, Problemlösekompetenz, Forschungskompetenz

Arbeitsaufwand:

Gesamt: 180 Std.

75 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

75 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

30 Std. Vorlesung (Präsenzstudium)

Voraussetzungen:		ECTS/LP-Bedingungen:
Die folgenden Grundlagenmodule müssen bestanden sein: Geoinformatik,		Aktive Mitarbeit. Modulprüfung.
Kartographie und Fernerkundung, Informatik I und II, Programmierkurs,		
Humangeographie I und II, Physische (Geographie I und II.	
Angebotshäufigkeit: in der Regel	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
mind. 1x pro Studienjahr	14 0	ا ما
Tillia. 1x pro Stadierijani	4 8.	1 Semester
SWS:	4 8. Wiederholbarkeit:	1 Semester

Modulteile

Modulteil: Aktuelle Themen der Geoinformatik

Lehrformen: Seminar Sprache: Deutsch / Englisch Angebotshäufigkeit: halbjährlich

SWS: 2 **ECTS/LP:** 6.0

Inhalte:

Die Inhalte dieser Veranstaltung richten sich nach aktuellen Forschungsproblemen, z.B. Projekte zur Fussgängernavigation, zur Geosimulation von Prozessen, zu Location-based Services für die multimodale Navigation sowie Anwendungen im Bereich AgentAnalyst.

Literatur:

Je nach Themenwahl.

Zugeordnete Lehrveranstaltungen:

Selected Topics in Geoinformatics (Seminar)

Prüfung

Aktuelle Themen der Geoinformatik

Mündliche Prüfung, oder Projektbericht

Modul GEO-3090 (= BScGl_FGI): Forschungsmodul Geoinforma-

6 ECTS/LP

tik

Research seminar in Geoinformatics

Version 2.0.0 (seit WS15/16)

Modulverantwortliche/r: Prof. Dr. Sabine Timpf

Inhalte

Die Inhalte dieses Moduls entwickeln sich mit den Forschungsinteressen der Dozierenden.

Lernziele/Kompetenzen:

Nach Besuch dieses Moduls können Studierende ein theoretisches oder praktisches Problem aus dem Bereich der Geoinformatik analysieren und dessen Struktur verstehen. Sie sind in der Lage die korrekte Fachliteratur zu finden und zu beurteilen sowie die Notwendigkeit von Forschungen zum angegebenen Problem zu erkennen. Sie können unter Anleitung diese Forschungsarbeit theoretisch und empirisch unterstützen und im Rahmen einer Projektarbeit umsetzen.

Schlüsselqualifikationen: Fertigkeit zur Zusammenarbeit in Teams, Kommunikationsfähigkeit,

Problemlösekompetenz, Forschungskompetenz

Arbeitsaufwand:

Gesamt: 180 Std.

30 Std. Seminar (Präsenzstudium)

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach BedarfEmpfohlenes Fachsemester:IWS oder SS4 8.		Minimale Dauer des Moduls: 1 Semester
sws : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Forschungsseminar Geoinformatik

Lehrformen: Seminar **Sprache:** Deutsch

Angebotshäufigkeit: halbjährlich

SWS: 2

Inhalte:

Die Inhalte dieser Veranstaltung richten sich nach den aktuellen Forschungsproblemen. In Planung sind Forschungsarbeiten zur Fussgängernavigation, zur Modellierung von raum-zeitlichen Daten sowie zur automatisierten Erkennung von räumlichem Verhalten.

Literatur:

Je nach Themenwahl.

Zugeordnete Lehrveranstaltungen:

Forschungsseminar Angewandte Geoinformatik (Geoinformatik B.Sc.) (Seminar)

this project course is given in English

Forschungsseminar Geoinformatik (Seminar)

Prüfung

Projekt

Projektarbeit

Modul GEO-3104 (= BScGI_VIZ): Geovisualisierung

Geovisualization

6 ECTS/LP

Version 2.0.0 (seit WS15/16)

Modulverantwortliche/r: Prof. Dr. Jukka Krisp

Inhalte:

Einführung in die thematische Kartographie und Entwicklungen der thematischen Kartographie, Mentale Kartengenerierung, Physikalische Kartenherstellung, Kartennutzung, Kartenlesen, "Thematisch-statistische Reliefs" z.T. aktuelle Forschung in der angewandten Geoinformatik, Kartenanalyse, Karteninterpretation, Umsetzung geostatistischer Daten in einer thematischen Karte mit einem geographischen Informationssystem (GIS)

Lernziele/Kompetenzen:

Ziel des Moduls ist es Sachverhalte in kartographischer Form inhaltlich und methodisch angemessen graphisch darzustellen und mit fachsprachlichen Begriffen zu beschreiben. Studierende entwickeln ihre die Kompetenz im Umgang, der Interpretation, sowie der eigenen Gestaltung von thematischen Karten mit einem geographischen Informationssystem (GIS). Die Studierenden sind dann in der Lage, Geodaten in verschiedene kartographische Produkte zu überführen. Sie können geographische Daten auswählen, klassifizieren und kombinieren, die sich zur Darstellung in einer thematischen Karte darzustellen. Sie können ein GIS in Grundzügen anwenden, eine Basiskarte anfertigen (digitalisieren und designen) und eine thematische Karte herstellen, die die gewählten graphischen Variablen am besten zur Geltung bringt.

Arbeitsaufwand:

Gesamt: 180 Std.

40 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

40 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

40 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vorlesung (Präsenzstudium)

Voraussetzungen: Kartographie und GIS.		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: 4 8.	Minimale Dauer des Moduls: 1 Semester
sws : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Kartographie II

Lehrformen: Übung **Sprache:** Deutsch

Angebotshäufigkeit: jedes Semester

SWS: 2

Inhalte:

Visualisierung komplexer Sachzusammenhänge mit räumlichen oder raum-zeitlichen Komponenten. Anwendung von Spezialsoftware zur Geovisualisierung.

Literatur:

- Slocum, T.: Thematic cartography and geovisualization, Prentice Hall, 2010
- Dykes, J., MacEachren, A.M., Kraak, M.J.: Exploring geovisualization, Elsevier, 2005

Zugeordnete Lehrveranstaltungen:

Kartographie 2 (Gruppe 1) (Übung)

Kartographie 2 (Gruppe 2) (Übung)

Kartographie 2 (Gruppe 3) (Übung)

Prüfung

GI_VIZ Geovisualisierung

praktische Prüfung

Modul INF-0023 (= BScGl_GVS): Grundlagen verteilter Systeme

5 ECTS/LP

Version 2.0.0 (seit WS14/15)

Modulverantwortliche/r: Prof. Dr. Bernhard Bauer

Lernziele/Kompetenzen:

Nach der Teilnahme an den Modulveranstaltungen ist der Studierende in der Lage die Grundlagen verteilter Systeme zu verstehen, anzuwenden und zu bewerten.

Schlüsselqualifikationen: Erlernen des eigenständigen Arbeitens mit Lehrbüchern (oder englischsprachiger

Fachliteratur); Erwerb von Abstraktionsfähigkeiten

Arbeitsaufwand:

Gesamt: 150 Std.

15 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vorlesung (Präsenzstudium) 30 Std. Übung (Präsenzstudium)

15 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Wintersemester Empfohlenes Fachsemester: ab dem 5.		Minimale Dauer des Moduls: 1 Semester
SWS: 4	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Grundlagen verteilter Systeme (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 2

Inhalte:

Die Vorlesung "Grundlagen verteilter Systeme" beschäftigt sich schwerpunktmäßig mit folgenden Themen: Einführung in verteilte Systeme, Netzwerk-Grundlagen, Kommunikationsmodelle, Synchronisation und Koordination, Konsistenz und Replikation, Fehlertoleranz, Prozeßmanagement, Infrastruktur heterogener verteilter Systeme, Client/Server Systeme.

Literatur:

- Folien
- Tanenbaum, van Steen: Verteilte Systeme, Pearson Studium
- · Coulouris, Dollimore, Kindberg: Verteilte Systeme, Pearson Studium

Modulteil: Grundlagen verteilter Systeme (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Grundlagen verteilter Systeme (Klausur)

Klausur / Prüfungsdauer: 90 Minuten

Modul INF-0024 (= BScGl_SVS): Softwaretechnologien für verteilte Systeme

5 ECTS/LP

Version 2.0.0 (seit WS14/15)

Modulverantwortliche/r: Prof. Dr. Bernhard Bauer

Lernziele/Kompetenzen:

Nach der Teilnahme an den Modulveranstaltungen ist der Studierende in der Lage aktuelle Softwaretechnologien für verteilte Systeme verstehen, anwenden und bewerten zu können.

Schlüsselqualifikationen: Erlernen des eigenständigen Arbeitens mit Lehrbüchern (oder englischsprachiger Fachliteratur); Erwerb von Abstraktionsfähigkeiten

Arbeitsaufwand:

Gesamt: 150 Std.

60 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

15 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

15 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

30 Std. Übung (Präsenzstudium) 30 Std. Vorlesung (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 4	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Softwaretechnologien für verteilte Systeme (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 2

Inhalte:

Die Vorlesung "Softwaretechnologien für verteilte Systeme" behandelt folgenden Themengebiete: Einführung in verteilte Systeme, Service-Orientierte Architekturen, semantische Technologien sowie intelligente autonome Systeme.

Literatur:

- Folien
- · Erl: Service Oriented Architecture
- Engels et al.: Quasar Enterprise

Modulteil: Softwaretechnologien für verteilte Systeme (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Softwaretechnologien für verteilte Systeme (Klausur)

Klausur / Prüfungsdauer: 90 Minuten

Modul INF-0026 (= BScGI_SSE): Seminar über Software Engineering verteilter Systeme (BA)

4 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Bernhard Bauer

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden in der Lage, grundlegende Problemstellungen, Konzepte, Methoden, Verfahren, Techniken und Technologien auf dem Gebiet des Software Engineerings verteilter Systeme selbstständig zu erarbeiten und bezogen auf ein spezielles Thema aus dem genannten Gebiet zu bewerten. Sie verfügen über die Arbeitstechniken, Kommunikationsfähigkeit und Fähigkeit zum Einsatz neuer Medien, um ein spezielles Thema in Wort und Schrift klar und verständlich zu präsentieren und Themenstellungen aus dem genannten Gebiet kritisch und argumentativ zu diskutieren.

Schlüsselqualifikationen: Erlernen von Präsentationstechniken; Abwägen von Lösungsansätzen

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Semester Empfohlenes Fachsemester: ab dem 5.		Minimale Dauer des Moduls: 1 Semester
sws : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar über Software Engineering verteilter Systeme

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Aktuelle Software Engineering-Themen aus Industrie und Forschung.

Literatur:

Wird in der jeweiligen Kickoff-Veranstaltung vorgestellt.

Zugeordnete Lehrveranstaltungen:

Seminar zu Software Engineering verteilter Systeme f. Bachelor (Seminar)

Bestandteil dieses Seminars sind fortgeschrittene Ansätze und Techniken im Bereich Software Engineering. Dies betrifft alle Phasen des Softwareentwicklungszyklus von der Anforderungsanalyse bis hin zum Testen. Modellierungstechniken sowie domänenspezifische Sprachen bilden einen Schwerpunkt des Seminars. Unter anderem werden in diesem Seminar Themen in Kooperation mit dem Kernkompetenzzentrum FIM vergeben.

Prüfung

Vortrag und schriftliche Ausarbeitung

Seminar

Modul INF-0029 (= BScGI_FPVS): Forschungsmodul Softwaremethodiken für verteilte Systeme

6 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Bernhard Bauer

Lernziele/Kompetenzen:

Nach der Teilnahme am Forschungsmodul sind die Studierenden in der Lage, Problemstellungen mittlerer Komplexität auf dem Gebiet des Software Engineerings verteilter Systeme zu verstehen und weiterführende Konzepte, Methoden, Verfahren, Techniken und Technologien des genannten Gebiets in Forschungsprojekten zu analysieren.

Sie verfügen über die Team- und Kommunikationsfähigkeit, die Fähigkeit zur Literaturrecherche und die Lern- und Arbeitstechniken, um Problemstellungen auf dem genannten Gebiet zu diskutieren sowie Zwischenergebnisse kritisch zu bewerten, zu kombinieren und zu präsentieren.

Schlüsselqualifikationen: Grundsätze guter wissenschaftlicher Praxis; Teamfähigkeit; Erlernen von Präsentationstechniken; schriftliche Präsentation eigener Ergebnisse

Arbeitsaufwand:

Gesamt: 180 Std.

165 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf Empfohlenes Fachsemester: ab dem 5.		Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Forschungsmodul Softwaremethodiken für verteilte Systeme

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Aktuelle Forschungsthemen am DS-Lab.

Literatur:

Wird zu den jeweiligen Themen bereitgestellt.

Prüfung

Vortrag und schriftliche Ausarbeitung

Praktikum

Modul INF-0030 (= BScGI_PMPVS): Praxismodul Softwaremethodiken für verteilte Systeme

11 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Bernhard Bauer

Lernziele/Kompetenzen:

Nach der Teilnahme am Praxismodul sind die Studierenden in der Lage, grundlegende Problemstellungen auf dem Gebiet des Software Engineerings verteilter System zu verstehen und grundlegende Konzepte, Methoden, Verfahren, Techniken und Technologien aus dem genannten Gebiet in Entwicklungsprojekten anzuwenden.

Sie verfügen über die Team- und Kommunikationsfähigkeit, um Problemstellungen auf dem genannten Gebiet zu erörtern, Fragen und Zwischenergebnisse zu diskutieren und zu präsentieren.

Schlüsselqualifikationen: Abwägen von Lösungsansätzen, selbständiges Arbeiten, analytisch-methodische Kompetenz, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 330 Std.

315 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf Empfohlenes Fachsemester: ab dem 5.		Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Praxismodul Softwaremethodiken für verteilte Systeme

Lehrformen: Praktikum Sprache: Deutsch

SWS: 1

Inhalte:Ersatz für Betriebspraktikum

Literatur:

wissenschaftliche Papiere, Handbücher

Prüfung

Projektabnahme

Praktikum, unbenotet

Modul INF-0043 (= BScGl_EAG): Einführung in die algorithmische Geometrie

5 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Torben Hagerup

Lernziele/Kompetenzen:

Kenntnis fundamentaler Probleme und Algorithmen der algorithmischen Geometrie der Ebene und die Fähigkeit, diese an leicht veränderte Rahmenbedingungen anzupassen und zu analysieren.

Schlüsselqualifikationen: Lern- und Arbeitstechniken; analytisches Denken; präzises Formulieren.

Arbeitsaufwand:

Gesamt: 150 Std.

15 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

15 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vorlesung (Präsenzstudium)

30 Std. Übung (Präsenzstudium)

Voraussetzungen:

Empfehlenswert: Gutes Verständnis des Informatik III-Stoffes

Modul Informatik 3 (INF-0111) - empfohlen

Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
	ab dem 4.	1 Semester
sws:	Wiederholbarkeit:	
4	siehe PO des Studiengangs	

Modulteile

Modulteil: Einführung in die algorithmische Geometrie (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 2

Inhalte:

Es werden grundlegende Konzepte, Algorithmen und Datenstrukturen der algorithmischen Geometrie der zweidimensionalen Ebene behandelt. Beispiele: konvexe Hüllen, Schnitt von Geradensegmenten, planare Unterteilungen, Triangulierung.

Literatur:

• M. de Berg, M. van Kreveld, M. Overmars und O. Schwarzkopf, Computational Geometry - Algorithms and Applications, Springer, 1997.

Modulteil: Einführung in die algorithmische Geometrie (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Einführung in die algorithmische Geometrie (mündliche Prüfung)

Mündliche Prüfung, Dauer: 30-45 Minuten

Modul INF-0044 (= BScGI_EPA): Einführung in parallele Algorithmen

5 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Torben Hagerup

Lernziele/Kompetenzen:

Kenntnis verschiedener Modelle des parallelen Rechnens und grundlegender paralleler Algorithmen. Verständnis für wichtige Methoden der Parallelisierung und für die Grenzen der Parallelverarbeitung. Die Fähigkeit, einfache parallele Algorithmen zu entwerfen und zu analysieren.

Schlüsselqualifikationen: Lern- und Arbeitstechniken; analytisches Denken; präzises Formulieren.

Arbeitsaufwand:

Gesamt: 150 Std.

60 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

15 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

30 Std. Übung (Präsenzstudium)

30 Std. Vorlesung (Präsenzstudium)

15 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

Voraussetzungen:

Empfehlenswert: Gutes Verständnis des Informatik III-Stoffes

Modul Informatik 3 (INF-0111) - empfohlen

Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:	
	ab dem 4.	1 Semester	
sws:	Wiederholbarkeit:		
4	siehe PO des Studiengangs		

Modulteile

Modulteil: Einführung in parallele Algorithmen (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 2

Inhalte:

Parallele Algorithmen sind Algorithmen, die von mehreren gleichzeitig operierenden Prozessoren ausgeführt werden, um ein gemeinsames Ziel zu erreichen. Parallelverarbeitung wird zur Geschwindigkeitssteigerung eingesetzt und ist in modernen Rechnersystemen allgegenwärtig, wenn auch größtenteils vor den Benutzern versteckt. Die Parallelisierung eines vorliegenden sequentiellen Algorithmus ist manchmal fast trivial, aber nicht deswegen weniger nützlich, manchmal ausgesprochen schwierig, und manchmal nach heutigem Wissen unmöglich. Die Vorlesung behandelt verschiedene Modelle des parallelen Rechnens, grundlegende parallele Algorithmen, fundamentale Prinzipien der Parallelverarbeitung und untere Schranken für parallele Algorithmen.

Literatur:

J. JáJá, Introduction to Parallel Algorithms, Addison-Wesley, 1992

Modulteil: Einführung in parallele Algorithmen (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Einführung in parallele Algorithmen (mündliche Prüfung)

Mündliche Prüfung, Dauer: 30-45 Minuten

Modul INF-0045 (= BScGl_FN): Flüsse in Netzwerken

8 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Torben Hagerup

Lernziele/Kompetenzen:

Kenntnis und Verständnis verschiedener Flussalgorithmen und ihrer Analyse; Fähigkeit zur selbstständigen Modellierung durch Flussprobleme, zur Bewertung der Modellierung und zur Auswahl geeigneter Flussalgorithmen für iedes Modell.

Schlüsselqualifikationen: Lern- und Arbeitstechniken; analytisches Denken; präzises Formulieren.

Arbeitsaufwand:

Gesamt: 240 Std.

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

60 Std. Vorlesung (Präsenzstudium) 30 Std. Übung (Präsenzstudium)

\/ _~	rau		~4-	···	~~	n.
vu	ıau	35	ELZ	un	ue	11.

Empfehlenswert: Gutes Verständnis des Informatik III-Stoffes, insbesondere

im Bereich der Graphenalgorithmen.

Modul Informatik 3 (INF-0111) - empfohlen

Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
	ab dem 4.	1 Semester
sws:	Wiederholbarkeit:	
6	siehe PO des Studiengangs	

Modulteile

Modulteil: Flüsse in Netzwerken (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

Die Vorlesung behandelt Flüsse in Netzwerken, Algorithmen zu ihrer Berechnung sowie Anwendungen von Flüssen bei der Modellierung und Lösung anderer algorithmischer Probleme. Ein Netzwerk kann man sich als ein System von "Rohrleitungen" vorstellen, die eine bestimmte "Ware" transportieren können. Jedes Rohr hat eine Kapazität, die angibt, wieviel Ware pro Zeiteinheit durch das Rohr fließen kann; hierbei entstehen eventuell zusätzlich Kosten, die von dem Rohr abhängen. Bei einem vorliegenden Netzwerk kann man sich eine Fülle algorithmischer Fragen stellen. Zentral für uns wird das Problem sein, einen möglichst großen Fluss an Waren von einer ausgezeichneten Quelle zu einer ausgezeichneten Senke zu erreichen (Max-Flow-Problem). Wir werden einige der besten Algorithmen für dieses Problem kennenlernen, insbesondere den Ende des 20. Jahrhunderts entdeckten Binary-Blocking-Flow-Algorithmus von Goldberg und Rao. Auch das Min-Cost-Max-Flow-Problem wird zur Sprache kommen.

Literatur:

- Skript
- R.K. Ahuja, T.L. Magnati und J. B. Orlin, Network Flows, Prentice Hall, 1993.

Modulteil: Flüsse in Netzwerken (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Flüsse in Netzwerken (mündliche Prüfung)

Mündliche Prüfung, Dauer: 30-45 Minuten

Modul INF-0046 (= BScGl_PGA): Praktikum: Graphalgorithmen

8 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Torben Hagerup

Lernziele/Kompetenzen:

Programmiererfahrung; die Studierenden sind in der Lage, Graphalgorithmen aus einfachen wissenschaftlichen Veröffentlichungen zu verstehen und zu analysieren. Fähigkeit zur Modifizierung von bekannten Graphalgorithmen, um neue Probleme zu lösen.

Schlüsselqualifikationen: Team- und Kommunikationsfähigkeit; Lern- und Arbeitstechniken; grundlegende Fähigkeit zur Analyse und Präsentation abstrakter Sachverhalte.

Arbeitsaufwand:

Gesamt: 240 Std.

90 Std. Praktikum (Präsenzstudium)

150 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

Voraussetzungen:

Empfehlenswert: Gutes Verständnis des Informatik III-Stoffes, insbesondere

im Bereich der Graphalgorithmen.

Modul Informatik 3 (INF-0111) - empfohlen

Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester: ab dem 4.	Minimale Dauer des Moduls: 1 Semester
sws : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Praktikum: Graphalgorithmen

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 6

Inhalte:

Im Praktikum werden sowohl theoretisch schon bekannte Algorithmen für beispielsweise das Finden eines minimalen Spannbaums oder der Bestimmung eines bipartiten Graphen als auch Algorithmen aus der Literatur für beispielsweise das Matching oder das Knotenfärbungsproblem in C++ implementiert. Hierbei werden häufig verwendete Lösungsansätze wie die Bottom-Up-Strategie oder Approximationsalgorithmen an Beispielproblemen erläutert.

Literatur:

Ausgewählte wissenschaftliche Artikel.

Prüfung

Praktikum: Graphalgorithmen (Abschlussbericht, Präsentation, Softwareabgabe)

Praktikum

Modul INF-0047 (= BScGl_PZG): Praktikum: Zeichnen von Graphen

8 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Torben Hagerup

Lernziele/Kompetenzen:

Programmiererfahrung; Fähigkeit zum Verstehen und Analysieren von einfachen wissenschaftlichen

Veröffentlichungen; Kenntnis verschiedener sinnvoller visueller Darstellungen von Graphen und deren Berechnung.

Schlüsselqualifikationen: Team- und Kommunikationsfähigkeit; Lern- und Arbeitstechniken; grundlegende Fähigkeit zur Analyse und Präsentation abstrakter Sachverhalte.

Arbeitsaufwand:

Gesamt: 240 Std.

150 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

90 Std. Praktikum (Präsenzstudium)

Voraussetzungen:

Empfehlenswert: Gutes Verständnis des Informatik III-Stoffes, insbesondere

im Bereich der Graphalgorithmen.

Modul Informatik 3 (INF-0111) - empfohlen

Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
	ab dem 4.	1 Semester
sws:	Wiederholbarkeit:	
6	siehe PO des Studiengangs	

Modulteile

Modulteil: Praktikum: Zeichnen von Graphen

Lehrformen: Praktikum Sprache: Deutsch

SWS: 6

Inhalte:

Das Praktikum behandelt Algorithmen zum Zeichnen von Graphen in der Ebene. Ein solcher Algorithmus nimmt als Eingabe einen Graphen und generiert anhand von bestimmten Kriterien einen ästhetisch schönen und leicht zu verstehenden Graphen. Als Programmiersprache wird C++ verwendet.

Literatur:

Ausgewählte wissenschaftliche Artikel.

Prüfung

Praktikum: Zeichnen von Graphen (Abschlussbericht, Präsentation, Softwareabgabe)

Praktikum

Modul INF-0049 (= BScGI_PMTI): Praxismodul Theoretische Informatik

11 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Torben Hagerup

Lernziele/Kompetenzen:

Nach der Teilnahme am Praxismodul sind die Studierenden in der Lage, grundlegende Problemstellungen auf dem Gebiet der theoretischen Informatik zu verstehen und grundlegende Konzepte, Methoden, Verfahren, Techniken und Technologien aus dem genannten Gebiet in Entwicklungsprojekten anzuwenden. Sie können Problemstellungen und Ergebnisse des Gebiets präzise beschreiben und diskutieren.

Schlüsselqualifikationen: Analytisch-methodische Kompetenz, Fähigkeit zum selbständigen Arbeiten.

Arbeitsaufwand:

Gesamt: 330 Std.

315 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Praxismodul Theoretische Informatik

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte:

Ersatz für Betriebspraktikum. Mitarbeit in einem Forschungsprojekt am Lehrstuhl.

Literatur:

- · Wissenschaftliche Papiere
- · Handbücher.

Prüfung

Projektabnahme

Praktikum, unbenotet

Modul INF-0060 (= BScGl_GOC): Grundlagen des Organic Computing

5 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Jörg Hähner

Lernziele/Kompetenzen:

Erwerb grundlegender Kenntnisse über das Forschungsgebiet Organic Computing, basierend auf grundlegenden Konzepten naturanaloger Algorithmen und der Funktionsweise selbstorganisierender Systeme. Dazu wird ein Verständnis für Probleme bei der Entwicklung komplexer selbstorganisierter Systeme erarbeitet und anhand von Beispielen illustriert. Die erworbenen Kenntnisse können als Grundlage für die weiterführende Mastervorlesung "Organic Computing" genutzt und dort vertieft werden.

Schlüsselqualifikationen: analytisch-methodische Kompetenz, Abwägen von Lösungsansätzen, Erwerb von Abstraktionsfähigkeiten, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 150 Std.

15 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium) 15 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

30 Std. Übung (Präsenzstudium) 30 Std. Vorlesung (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 3.	Minimale Dauer des Moduls: 1 Semester
SWS : 4	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Grundlagen des Organic Computing (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 2

Inhalte:

Die Vorlesung "Grundlagen des Organic Computing" vermittelt Ansätze zur Beherrschung von hoher Komplexität in technischen Systemen. Ausgehend von der Definition des Forschungsgebietes Organic Computing und seiner allgemeinen Zielsetzung werden insbesondere Konzepte und Mechanismen aus der Natur in technische Anwendungen und Algorithmen überführt.

Literatur:

- · aktuelle wissenschaftliche Paper
- Müller-Schloer, Schmeck, Ungerer: Organic Computing A Paradigm Shift for Complex Systems, Birkhäuser, 2011
- Würtz: Organic Computing (Understanding Complex Systems), Springer 2008

Modulteil: Grundlagen des Organic Computing (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Inhalte:

Die Übung greift die vorgestellten Algorithmen und Ansätze auf und überführt diese in eine simulierte Umgebung. Die Studenten erlernen dabei vor allem wissenschaftliche Grundsätze bei der Entwicklung und Realisierung komplexer Algorithmen - die Evaluierung und der Vergleich gegenüber herkömmlichen Ansätzen steht im Vordergrund.

Prüfung

Grundlagen des Organic Computing (mündliche Prüfung)

Mündliche Prüfung / Prüfungsdauer: 30 Minuten

Beschreibung:

Die Prüfung kann jedes Semester zu Beginn und Ende der vorlesungsfreien Zeit abgelegt werden.

Modul INF-0061 (= BScGI_AHS): Ad-Hoc- und Sensornetze

5 ECTS/LP

Version 1.0.0

Modulverantwortliche/r: Prof. Dr. Jörg Hähner

Lernziele/Kompetenzen:

Fundierte Kenntnisse über mögliche Einsatzgebiete und die Funktionsweise von ad-hoc und Sensornetzen. Fähigkeit zur Bewertung der Unterschiede zwischen traditionellen Rechnernetzen und infrastrukturlosen Kommunikationsnetzen.

Schlüsselqualifikationen: analytisch-methodische Kompetenz, Abwägen von Lösungsansätzen, Erwerb von Abstraktionsfähigkeiten, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 150 Std.

15 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

15 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

30 Std. Übung (Präsenzstudium)

60 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vorlesung (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Sommersemester	Empfohlenes Fachsemester: ab dem 3.	Minimale Dauer des Moduls: 1 Semester
SWS: 4	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Ad-Hoc- und Sensornetze (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 2

Inhalte:

Die Vorlesung "Ad-hoc und Sensornetze" behandelt die Funktionsweise von infrastrukturlosen Kommunikationsnetzen, die in der Regel aus einer Vielzahl von ressourcenbeschränkten eingebetteten und teilweise mobilen Rechenknoten bestehen. Die Beschränkungen äußern unter anderem durch eingeschränkte Rechenleistung und Energieversorgung (z.B. Batterien). Basierend auf diesem Systemmodell werden Themen wie beispielsweise Medienzugriff, Zeitsynchronisation, Lokalisation, datenzentrische Kommunikation und Routing behandelt. In der Übung werden die vorgestellten Verfahren vertiefend behandelt und teilweise implementiert und evaluiert.

Literatur:

- Folien
- Krüger, M. and Grosse, C. U. (2004). Structural health monitoring with wireless sensor networks. Otto-Graf-Journal, 15:77-89.
- Kahn, J. M., Katz, R. H., and Pister, K. S. J. (1999). Next century challenges: Mobile networking for "Smart Dust". In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pages 271-278. ACM Press.
- Karl, H and Willig, A: Protocols and Architectures for Wireless Sensor Networks, John Wiley & Sons 2004, ISBN-13: 978-0470519233.
- Römer, K. and Mattern, F. (2004). The design space of wireless sensor networks. IEEE Wireless Communications, 11(6):54-61.

Zugeordnete Lehrveranstaltungen:

Ad-hoc und Sensornetze (Vorlesung)

Die Vorlesung behandelt die Funktionsweise sowie Einsatzgebiete von Ad-hoc und Sensornetzen (AHSN), die in der Regel aus (mobilen) ressourcenbeschränkten Knoten bestehen. Themen die behandelt werden sind z.B. Gemeinsamkeiten und Unterschiede der Netze, sowie ihrer Netzwerkarchitekturen. Des Weiteren werden die Rollen des MAC-Layer, des Routings, des Datenmanagements, oder der Zeitsynchronisation in Bezug auf AHSN genauer untersucht.

Modulteil: Ad-Hoc- und Sensornetze (Übung)

Lehrformen: Übung Sprache: Deutsch

SWS: 2

Zugeordnete Lehrveranstaltungen:

Übung zu Ad-hoc und Sensornetze (Übung)

Übung zur Vorlesung "Ad-hoc und Sensornetze"

Prüfung

Ad-Hoc- und Sensornetze (mündliche Prüfung)

Mündliche Prüfung / Prüfungsdauer: 30 Minuten

Beschreibung:

Die Prüfung kann jedes Semester zu Beginn und Ende der vorlesungsfreien Zeit abgelegt werden.

Modul INF-0062 (= BScGI_SSVS): Seminar: Selbstorganisation in Verteilten Systemen

4 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Jörg Hähner

Lernziele/Kompetenzen:

Die Studierenden sind in der Lage zur selbstständigen Erarbeitung eines Themas und der geeigneten Präsentation in Schrift und Vortrag, sowie der sachlichen Diskussion über einen Vortrag.

Schlüsselqualifikationen: analytisch-methodische Kompetenz, Abwägen von Lösungsansätzen, Erwerb von Abstraktionsfähigkeiten, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Sommersemester	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar: Selbstorganisation in Verteilten Systemen

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Die Themen des Seminars werden jedes Jahr neu festgelegt und aktuellen Trends angepasst.

Literatur

Literatur in Abhängigkeit von den aktuellen Themen: wiss. Paper oder Bücher

Zugeordnete Lehrveranstaltungen:

Selbstorganisation in verteilten Systemen (Seminar) (Seminar)

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0063 (= BScGI_SAHS): Seminar Ad Hoc und Sensornetze

4 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Jörg Hähner

Lernziele/Kompetenzen:

Die Studierenden sind in der Lage zur selbstständigen Erarbeitung eines Themas und der geeigneten Präsentation in Schrift und Vortrag, sowie der sachlichen Diskussion über einen Vortrag.

Schlüsselqualifikationen: analytisch-methodische Kompetenz, Abwägen von Lösungsansätzen, Erwerb von Abstraktionsfähigkeiten, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
sws : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Ad Hoc und Sensornetze

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Die Themen des Seminars werden jedes Jahr neu festgelegt und aktuellen Trends angepasst.

Literatur

Literatur in Abhängigkeit von den aktuellen Themen: wiss. Paper oder Bücher

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0064 (= BScGl_FOC): Forschungsmodul Organic Computing

6 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Jörg Hähner

Lernziele/Kompetenzen:

Nach der Teilnahme am Forschungsmodul sind die Studierenden in der Lage, Problemstellungen mittlerer Komplexität auf dem Gebiet "Organic Computing" zu verstehen und weiterführende Konzepte, Methoden, Verfahren, Techniken und Technologien des genannten Gebiets in Forschungsprojekten zu analysieren. Sie verfügen über die Teamund Kommunikationsfähigkeit, die Fähigkeit zur Literaturrecherche und die Lern- und Arbeitstechniken, um Problemstellungen auf dem genannten Gebiet zu diskutieren sowie Zwischenergebnisse kritisch zu bewerten, zu kombinieren und zu präsentieren.

Schlüsselqualifikationen: Grundsätze guter wissenschaftlicher Praxis, selbstständiges Arbeiten, Erlernen des Arbeitens mit englischsprachiger Fachliteratur

Arbeitsaufwand:

Gesamt: 180 Std.

15 Std. Seminar (Präsenzstudium)165 Std. Praktikum (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS:	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Forschungsmodul Organic Computing

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte:

Mitarbeit an aktuellen Forschungsthemen.

Literatur:

In Abhängigkeit vom zu bearbeitenden Thema:

- Paper
- Buch
- Handbuch

Prüfung

Vortrag und schriftliche Ausarbeitung

Praktikum

Modul INF-0065 (= BScGI_PMOC): Praxismodul Organic Computing

11 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Jörg Hähner

Lernziele/Kompetenzen:

Nach der Teilnahme am Praxismodul sind die Studierenden in der Lage, grundlegende Problemstellungen auf dem Gebiet "Organic Computing" zu verstehen und grundlegende Konzepte, Methoden, Verfahren, Techniken und Technologien aus dem genannten Gebiet in Entwicklungsprojekten anzuwenden. Sie verfügen über die Team- und Kommunikationsfähigkeit, um Problemstellungen auf dem genannten Gebiet zu erörtern, Fragen und Zwischenergebnisse zu diskutieren und zu präsentieren.

Schlüsselqualifikationen: selbstständiges Arbeiten, Fähigkeit zur Reflexion experimenteller Ergebnisse, analytischmethodische Kompetenz

Arbeitsaufwand:

Gesamt: 330 Std.

315 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Praxismodul Organic Computing

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte

Ersatz für das Betriebspraktikum

Literatur:

In Abhängigkeit vom zu bearbeitenden Thema:

- Paper
- Buch
- Handbuch

Prüfung

Projektabnahme

Praktikum, unbenotet

Modul INF-0075 (= BScGl_FDB): Forschungsmodul Datenbanken und Informationssysteme

6 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Dr. Markus Endres

Lernziele/Kompetenzen:

Nach der Teilnahme am Forschungsmodul sind die Studierenden in der Lage, Problemstellungen mittlerer Komplexität auf dem Gebiet Datenbanken und Informationssysteme zu verstehen und weiterführende Konzepte, Methoden, Verfahren, Techniken und

Technologien des genannten Gebiets in Forschungsprojekten zu analysieren.

Sie verfügen über die Team- und Kommunikationsfähigkeit, die Fähigkeit zur Literaturrecherche und die Lern- und Arbeitstechniken, um Problemstellungen auf dem genannten Gebiet zu diskutieren sowie Zwischenergebnisse kritisch zu bewerten, zu kombinieren und zu präsentieren.

Schlüsselqualifikationen: Selbständiges Arbeiten, Literaturrecherche, schriftliche Präsentation eigener Ergebnisse

Arbeitsaufwand:

Gesamt: 180 Std.

15 Std. Seminar (Präsenzstudium)165 Std. Praktikum (Selbststudium)

Voraussetzungen: Modul Datenbanksysteme (INF-0073) -	- empfohlen	
Angebotshäufigkeit: nach Bedarf Empfohlenes Fachsemester: ab dem 5.		Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Forschungsmodul Datenbanken und Informationssysteme

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1 Inhalte:

Arbeiten am Präferenz-SQL-System des Lehrstuhls

Literatur:

- Aktuelle Forschungsbeiträge zum Thema "Präferenzen"
- Handbücher

Prüfung

Softwareabnahme, Vortrag, Abschlußbericht

Praktikum

Modul INF-0076 (= BScGI_PMDB): Praxismodul Datenbanken und Informationssysteme

11 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Dr. Markus Endres

Lernziele/Kompetenzen:

Nach der Teilnahme am Praxismodul sind die Studierenden in der Lage, grundlegende Problemstellungen auf dem Gebiet Datenbanken und Informationssysteme zu verstehen und grundlegende Konzepte, Methoden, Verfahren, Techniken und Technologien aus dem genannten Gebiet in Entwicklungsprojekten anzuwenden. Sie verfügen über die Team- und Kommunikationsfähigkeit, um Problemstellungen auf dem genannten Gebiet zu erörtern, Fragen und Zwischenergebnisse zu diskutieren und zu präsentieren.

Schlüsselqualifikationen: Eigenständige Arbeit im Gruppenumfeld, Zeitmanagement, Abwägen von Lösungsansätzen, selbständiges Arbeiten, Präsentation eigener Ergebnisse

Arbeitsaufwand:

Gesamt: 330 Std.

315 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: Modul Datenbanksysteme (INF-0073) -	empfohlen	
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Praxismodul Datenbanken und Informationssysteme

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte:

Arbeiten am Präferenz-SQL-System des Lehrstuhls

Literatur:

- · Aktuelle Forschungsbeiträge zum Thema "Präferenzen"
- Handbücher

Prüfung

Projektabnahme und Vortrag

Praktikum, unbenotet

Modul INF-0081 (= BScGI_KS): Kommunikationssysteme

8 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Rudi Knorr

Lernziele/Kompetenzen:

Nach der Teilnahme an der Modulveranstaltung ist der Studierende in der Lage, einen fundierten Überblick über das Gebiet der Kommunikationssysteme und des Internets zu schaffen.

Studenten verstehen zentrale Begriffe und Konzepte der Kommunikationssysteme und sind mit wichtigen Netz-Architekturen vetraut.

Schlüsselqualifikationen: Fähigkeit zum logischen, analytischen und konzeptionellen Denken.

Arbeitsaufwand:

Gesamt: 240 Std.

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

60 Std. Vorlesung (Präsenzstudium) 30 Std. Übung (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Kommunikationssysteme (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

Die Vorlesung behandelt die grundlegenden Modelle, Verfahren, Systemkonzepte und Technologien die im Bereich der digitalen Kommunikationstechnik und des Internets zum Einsatz kommen.

Der Fokus hierbei ist auf Protokollen und Verfahren, die den ISO/OSI-Schichten 1-4 zuzuordnen sind.

Die weiteren in der Vorlesung behandelten Themen sind unter anderem:

Lokale Netze nach IEEE802.3 und IEEE802.11, Internet Protokollen wie IPv4, IPv6, TCP und UDP, IP-

Routings-verfahren, das Breitband IP-Netz, die aktuelle Mobilfunknetze, Netzmanagement-funktionen und NGN-Anwendungen wie VoIP,IPTV und RCS.

Außerdem wird eine Exkursion zu einer Vermittlungsstelle der Deutsche Telekom Netzproduktion in München organisiert.

Literatur:

- Keith W. Ross, James F. Kurose, "Computernetzwerke", Pearson Studium Verlag, München, 2012
- Larry L. Peterson, Bruce S. Davie, "Computernetze: Eine systemorientierte Einführung", dpunkt.verlag, Heidelberg, 2007.
- Anatol Badach, Erwin Hoffmann, "Technik der IP-Netze" Hanser Verlag, München, 2007.
- Gerd Siegmund, "Technik der Netze Band 1 und 2", Hüthig Verlag, Heidelberg, 2009.

Modulteil: Kommunikationssysteme (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Kommunikationssysteme (Klausur) Klausur / Prüfungsdauer: 120 Minuten

Modul INF-0082 (= BScGI_FKT): Forschungsmodul Kommunikationssysteme

6 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Rudi Knorr

Lernziele/Kompetenzen:

Die Studierenden verfügen über detailliertes und aktuelles Wissen auf dem Gebiet "Kommunikationssysteme" und sind in der Lage in Forschungsprojekten zu dem Gebiet aktiv mitzuarbeiten.

Schlüsselqualifikationen: Team- und Kommunikationsfähigkeit, um Problemstellungen zu erörtern, Fragen und Zwischenergebnisse zu diskutieren und zu präsentieren.

Arbeitsaufwand:

Gesamt: 180 Std.

15 Std. Seminar (Präsenzstudium)165 Std. Praktikum (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS:	Wiederholbarkeit:	

Modulteile

Modulteil: Forschungsmodul Kommunikationssysteme

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte:

Aktuelle Forschungsthemen auf dem Gebiet "Kommunikationssysteme".

Literatur

wissenschaftliche Papiere, Handbücher

Prüfung

Vortrag und Abschlussbericht

Praktikum

Modul INF-0083 (= BScGI_PMKT): Praxismodul Kommunikationssysteme

11 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Rudi Knorr

Lernziele/Kompetenzen:

Nach der Teilnahme am Praxismodul sind die Studierenden in der Lage, in Entwicklungsprojekten zu dem Gebiet "Kommunikationssysteme" aktiv mitzuarbeiten und verfügen über detailliertes und aktuelles Wissen auf dem genannten Gebiet.

Schlüsselqualifikationen: selbständige und strukturierte Arbeitsweise, analytisch-methodische Kompetenz, grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 330 Std.

315 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Praxismodul Kommunikationssysteme

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte:

Aktuelle Forschungsthemen auf dem Gebiet "Kommunikationssysteme".

Literatur:

wissenschaftliche Papiere, Handbücher

Prüfung

Vortrag und Abschlussbericht

Praktikum, unbenotet

Modul INF-0086 (= BScGl_MMP): Multimedia Projekt

10 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Rainer Lienhart

Prof. Dr. Elisabeth André

Lernziele/Kompetenzen:

Die Studierenden lernen, die in den Vorlesungen Grundlagen Multimedia I und II sowie Informatik I bis III vermittelten Grundlagen in einem größeren Projekt auf dem Gebiet des Multimedia umzusetzen. Ebenso soll die Fähigkeit erlernt werden, in kleinen Teams größere Projektaufgaben (Entwicklung von Softwaremodulen) zu planen, nach einem selbst entwickelten Projektplan zu lösen und die Resultate angemessen im Plenum zu diskutieren und zu präsentieren.

Schlüsselqualifikationen: Fertigkeit der sicheren und überzeugenden Darstellung von Ideen und Konzepten; Kenntnisse der Denkweise und Sprache anwendungsrelevanter Disziplinen; Verstehen von Teamprozessen; Fertigkeit der Zusammenarbeit in Teams; Fähigkeit zur Leitung von Teams; Fertigkeit zur verständlichen Darstellung und Dokumentation von Ergebnissen; Fähigkeit, vorhandenes Wissen selbstständig zu erweitern; Fähigkeit, Beiträge zur Wissenschaft zu leisten; Kompetenz zum Erkennen von bedeutenden technischen Entwicklungen; Qualitätsbewusstsein, Akribie

Hinweis: Die Veranstaltung wird jedes Wintersemester vom Lehrstuhl André angeboten und jedes Sommersemester vom Lehrstuhl Lienhart

Arbeitsaufwand:

Gesamt: 300 Std.

210 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

90 Std. Praktikum (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Semester	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Multimedia Projekt

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 6

Inhalte:

Die konkrete Aufgabenstellung aus dem weitenläufigen Gebiet des Multimedia werden jedes Jahr neu und aktuell entworfen.

Literatur:

Literaturhinweise werden zu Beginn des Semesters bekanntgegeben.

Zugeordnete Lehrveranstaltungen:

Multimedia Projekt (Praktikum)

Prüfung

Vortrag mit Softwarepräsentation; Ausarbeitung mit Softwaredokumentation; Erkärung des Quellcodes (Code Review)

Projektarbeit

Modul INF-0088 (= BScGl_BN): Bayesian Networks

5 ECTS/LP

Version 1.0.0

Modulverantwortliche/r: Prof. Dr. Rainer Lienhart

Lernziele/Kompetenzen:

The student understands the core principles of Bayesian Networks and can apply them to many real-world problems of all sorts of different domains such as robots, web search, smart agents, automated diagnosis systems, help systems, and medical systems to name a few. Bayesian Networks are one of the most versatile statistical machine learning technique today. The student will understand, apply, analyse, and evaluate problems from the point of view of Bayesian Networks.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken

Arbeitsaufwand:

Gesamt: 150 Std.

15 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

15 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vorlesung (Präsenzstudium) 30 Std. Übung (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Sommersemester	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS: 4	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Bayesian Networks (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 2

Inhalte:

- 1. Basics of Probability Theory
- 2. Example: Bayesian Network based Face Detection
- 3. Inference
- 4. Influence Diagrams
- 5. Parameter Learning
- 6. Example: probabilistic Latent Semantic Analysis (pLSA)

Literatur:

- Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall Series in Artifical Intelligence, 2004. ISBN 0-13-012534-2
- Daphne Koller, Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009. 978-0262013192

Zugeordnete Lehrveranstaltungen:

Bayesian Networks (Vorlesung)

Modulteil: Bayesian Networks (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Zugeordnete Lehrveranstaltungen:

Übung zu Bayesian Networks (Übung)

Prüfung

Bayesian Networks (Klausur)

Klausur / Prüfungsdauer: 90 Minuten

Modul INF-0089 (= BScGI_SMDV): Seminar Multimediale Datenverarbeitung

4 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Rainer Lienhart

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden in der Lage, grundlegende Problemstellungen, Konzepte, Methoden, Verfahren, Techniken und Technologien aus dem Gebiet des Multimedia Computing und Computer Vision (z.B. Bildverarbeitung, Videoverarbeitung, maschinelles Sehen/Hören und Lernen, Bild-/Videosuche) selbstständig zu erarbeiten und bezogen auf ein spezielles Thema aus dem genannten Gebiet zu bewerten.

Sie verfügen über die Arbeitstechniken, Kommunikationsfähigkeit und Fähigkeit zum Einsatz neuer Medien, um ein spezielles Thema in Wort und Schrift klar und verständlich zu präsentieren und Themenstellungen aus dem genannten Gebiet kritisch und argumentativ zu diskutieren.

Schlüsselqualifikationen: Erlernen von Präsentationstechniken, Literaturrecherche, Arbeit mit englischer Fachliteratur, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 120 Std.

30 Std. Seminar (Präsenzstudium)

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 3.	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Multimediale Datenverarbeitung

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Das konkrete Thema des Seminars aus dem weitläufigen Gebiet des Multimedia und maschinellen Sehens wird jedes Jahr neu festgelegt und an aktuelle Themen angepasst.

Literatur:

aktuelle Forschungsliteratur

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0090 (= BScGl_FMC): Forschungsmodul Multimedia Computing & Computer Vision

6 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Rainer Lienhart

Lernziele/Kompetenzen:

Nach der Teilnahme am Forschungsmodul sind die Studierenden in der Lage, Problemstellungen mittlerer Komplexität auf dem Gebiet des Multimedia Computing und Computer Vision zu verstehen und weiterführende Konzepte, Methoden, Verfahren, Techniken und Technologien des genannten Gebiets in Forschungsprojekten zu analysieren.

Sie verfügen über die Team- und Kommunikationsfähigkeit, die Fähigkeit zur Literaturrecherche und die Lern- und Arbeitstechniken, um Problemstellungen auf dem genannten Gebiet zu diskutieren sowie Zwischenergebnisse kritisch zu bewerten, zu kombinieren und zu präsentieren.

Schlüsselqualifikationen: Erlernen von wissenschaftlichem Vorgehen

Arbeitsaufwand:

Gesamt: 180 Std.

165 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Forschungsmodul Multimedia Computing & Computer Vision

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte:

Die konkrete Aufgabenstellung aus dem weitenläufigen Gebiet des Multimedia und maschinellen Sehens (Bild-, Video- und Tonverarbeitung, Objekterkennung, Suche von Bild-, Video- und Tonmaterial) wird jedes Jahr aktuell für jeden Studenten einzeln neu entworfen.

Literatur:

wissenschaftliche Papiere, Handbücher

Prüfung

Vortrag und schriftliche Ausarbeitung

Praktikum

Modul INF-0091 (= BScGl_PMMC): Praxismodul Multimedia Computing

11 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Rainer Lienhart

Lernziele/Kompetenzen:

Nach der Teilnahme am Praxismodul sind die Studierenden in der Lage, grundlegende Problemstellungen auf dem Gebiet des Multimedia Computing und Computer Vision zu verstehen und

grundlegende Konzepte, Methoden, Verfahren, Techniken und Technologien aus dem genannten Gebiet in Entwicklungsprojekten anzuwenden.

Sie verfügen über die Team- und Kommunikationsfähigkeit, um Problemstellungen auf dem genannten Gebiet zu erörtern, Fragen und Zwischenergebnisse zu diskutieren und zu präsentieren.

Schlüsselqualifikationen: Selbständiges Arbeiten, analytisch-methodische Kompetenz, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 330 Std.

15 Std. Seminar (Präsenzstudium)315 Std. Praktikum (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Praxismodul Multimedia Computing

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte:

Ersatz für Betriebspraktikum; Die konkrete Aufgabenstellung aus dem weitenläufigen Gebiet des Multimedia und maschinellen Sehens (Bild-, Video- und Tonverarbeitung, Objekterkennung, Suche von Bild-, Video- und Tonmaterial) wird jedes Jahr aktuell für jeden Studenten einzeln neu entworfen.

Literatur:

- · wissenschaftliche Papiere
- · Handbücher

Prüfung

Projektabnahme

Praktikum, unbenotet

Modul INF-0099 (= BScGI_HSP): Halbordnungssemantik paralleler Systeme

6 ECTS/LP

Partial order semantics of concurrent systems

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Robert Lorenz

Lernziele/Kompetenzen:

Teilnehmer verstehen die folgenden wesentlichen Konzepte der Informatik auf einem wissenschaftlichen Niveau mit ihren mathematisch-formalen Grundlagen: Halbordnung und partielle Sprache, Nebenläufigkeit und Synchronizität, sequentielle und kausale Semantik, ereignisbasiertes System. Sie können einfache nebenläufige ereignisbasierte Systeme in einer geeigneten Modellierungssprache modellieren, sowie verschiedene Verhaltensmodelle zur Analyse und Simulation generieren, bewerten und ineinander überführen.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken; Eigenständiges Arbeiten mit Lehrbüchern und englischsprachiger Fachliteratur; Verständliche Präsentation von Ergebnissen; Qualitätsbewußtsein

Arbeitsaufwand:

Gesamt: 180 Std.

22 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

23 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

75 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

45 Std. Vorlesung (Präsenzstudium)

15 Std. Übung (Präsenzstudium)

Voraussetzungen:

Modul Diskrete Strukturen für Informatiker (INF-0109) - empfohlen Modul Einführung in die Theoretische Informatik (INF-0110) - empfohlen Modul Logik für Informatiker (INF-0155) - empfohlen

Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester: ab dem 3.	Minimale Dauer des Moduls: 1 Semester
SWS : 4	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Halbordnungssemantik paralleler Systeme (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch / Englisch

SWS: 3

Inhalte:

Die Veranstaltung gibt einen fundierten Überblick über traditionelle bis aktuelle Forschungsergebnisse zu Definition, Eigenschaften, Anwendung und Konsistenz von halbordnungsbasierten Semantiken verschiedener Modellierungssprachen paralleler (nebenläufiger) Systeme mit einem Schwerpunkt auf der Modellierungssprache der Petrinetze.

Literatur:

- · W. Reisig: Petrinetze Eine Einführung, Springer, 1986
- W. Reisig, G. Rozenberg: Lectures on Petri Nets I Basic Models, Springer, Lecture Notes in Computer Science 1491, 1998
- J. Desel, W. Reisig, G. Rozenberg: Lectures on Concurrency and Petri Nets, Springer, Lecture Notes in Computer Science 3098, 2004
- Projekt-Homepage VipTool: http://www.fernuni-hagen.de/sttp/forschung/vip_tool.shtml
- Projekt-Homepage SYNOPS: http://www.informatik.uni-augsburg.de/lehrstuehle/inf/projekte/synops/

Modulteil: Halbordnungssemantik paralleler Systeme (Übung)

Lehrformen: Übung

Sprache: Deutsch / Englisch

SWS: 1

Prüfung

Halbordnungssemantik paralleler Systeme (Klausur)

Klausur / Prüfungsdauer: 90 Minuten

Modul INF-0101 (= BScGI_SBDUK): Seminar Bottom-Up Datenverarbeitung auf der UNIX-Kommandozeile

4 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Robert Lorenz

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden sind in der Lage, ein Thema aus dem Gebiet "Datenverarbeitung mit der UNIX-Kommandozeile" selbstständig zu erarbeiten, dieses klar, verständlich und überzeugend in Schrift und Vortrag zu präsentieren und sachlich über Vorträge zu diskutieren.

Sie verfügen über die dafür notwendige wissenschaftliche Methodik, Kommunikationsfähigkeit und Fähigkeit zum Einsatz neuer Medien.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken; Fertigkeit der Dokumentation und verständlichen, sicheren und überzeugenden Darstellung von Ideen, Konzepten und Ergebissen; Kommunikationsfähigkeit; Fähigkeit zum Einsatz neuer Medien; Eigenständiges Arbeiten mit englischsprachiger Fachliteratur; Qualitätsbewußtsein;

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen:

Modul Informatik 1 (INF-0097) - empfohlen Modul Informatik 2 (INF-0098) - empfohlen Modul Programmierkurs (INF-0100) - empfohlen

Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester: ab dem 3.	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Bottom-Up Datenverarbeitung auf der UNIX-Kommandozeile

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Viele Internetseiten bieten interessante Daten. Aber wie verarbeitet man diese Daten weiter, wenn man andere Information als die präsentierte herausziehen will? Als Antwort auf diese Frage werden die typischen Unix-Befehle vorgestellt und an kleinen Beispielen demonstriert. Bash, curl, cat, sed, cut, sort, awk und einige andere Befehle werden im praktischen Umgang als Bottom-Up-Elemente zur Datenverarbeitung an konkreten Fragestellungen angewendet.

Literatur:

- UNIX-Grundlagen: Herold, Helmut; Bonn u.a., Addison-Wesley 1991
- UNIX for the Impatient: Abrahams, Paul W., Larson, Bruce R.; Reading, Mass. u.a., Addison-Wesley 1992
- Das UNIX System: Bourne, Stephen R.; Bonn, Addison-Wesley 1988
- UNIX: Gulbins, Jürgen; Berlin [u.a.], Springer 1988
- awk und sed: Herold, Helmut; Bonn u.a., Addison-Wesley 1991
- UNIX Shells: Herold, Helmut; Bonn u.a., Addison-Wesley 1993
- manpages der jeweiligen UNIX-Werkzeuge

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0102 (= BScGI_SSP): Seminar Strukturiertes Programmieren

4 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Robert Lorenz

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden sind in der Lage, ein Thema aus dem Gebiet "Strukturiertes Programmieren" selbstständig zu erarbeiten, dieses klar, verständlich und überzeugend in Schrift und Vortrag zu präsentieren und sachlich über Vorträge zu diskutieren.

Sie verfügen über die dafür notwendige wissenschaftliche Methodik, Kommunikationsfähigkeit und Fähigkeit zum Einsatz neuer Medien.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken; Fertigkeit der Dokumentation und verständlichen, sicheren und überzeugenden Darstellung von Ideen, Konzepten und Ergebissen; Kommunikationsfähigkeit; Fähigkeit zum Einsatz neuer Medien; Eigenständiges Arbeiten mit englischsprachiger Fachliteratur; Qualitätsbewußtsein;

Arbeitsaufwand:

Gesamt: 120 Std.

30 Std. Seminar (Präsenzstudium)

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

Voraussetzungen:

Modul Informatik 1 (INF-0097) - empfohlen Modul Informatik 2 (INF-0098) - empfohlen Modul Programmierkurs (INF-0100) - empfohlen

Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester: ab dem 3.	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Strukturiertes Programmieren

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Es werden verschiedene Programmieransätze, -paradigmen und -tools vorgestellt und anschließend an ausgewählten Beispielen diskutiert. Es werden Inhalte wie Structured Programming, formale Beweisführung, Top-Down-Vorgehen, Komposition, Literate Programming, Funktionale Programmierung und Objektorientierte Programmierung behandelt.

Literatur:

- Dahl, O.J., Dijkstra, E.W. & Hoare, C.A.R.: Structured Programming
- Finkel, R.A.: Advanced Programming Language Design
- Knuth, D.E.: Literated Programming
- · Martin, R.C.: Clean Code
- · Ramsey, N.: Literate Programming Simplified
- · Wirth, N.: A Brief History of Software Engineering
- · Wirth, N.: Systematisches Programmieren

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0103 (= BScGl_SGS): Seminar Grundlagen der Sprachverarbeitung

4 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Robert Lorenz

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden sind in der Lage, ein Thema aus dem Gebiet "Sprachverarbeitung" selbstständig zu erarbeiten, dieses klar, verständlich und überzeugend in Schrift und Vortrag zu präsentieren und sachlich über Vorträge zu diskutieren.

Sie verfügen über die dafür notwendige wissenschaftliche Methodik, Kommunikationsfähigkeit und Fähigkeit zum Einsatz neuer Medien.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken; Fertigkeit der Dokumentation und verständlichen, sicheren und überzeugenden Darstellung von Ideen, Konzepten und Ergebissen; Kommunikationsfähigkeit; Fähigkeit zum Einsatz neuer Medien; Eigenständiges Arbeiten mit englischsprachiger Fachliteratur; Qualitätsbewußtsein;

Arbeitsaufwand:

Gesamt: 120 Std.

30 Std. Seminar (Präsenzstudium)

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

Voraussetzungen:		
Modul Einführung in die Theoretische Informatik (INF-0110) - empfohlen		
Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
	ab dem 3.	1 Semester
sws:	Wiederholbarkeit:	
2	siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Grundlagen der Sprachverarbeitung

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Ausgewählte Kapitel aus:

Transduktoren, N-Gramme, Sprach-Tagging, HMMs, Sprachsynthese, Spracherkennung, Formale Grammatiken, Syntaktisches / Statistisches Parsing, Semantikrepräsentation, aktuelle Forschungsbeiträge.

Literatur:

- Daniel Jurafsky & James H. Martin: Speech and Language Processing
- M. Droste, W. Kuich, H. Vogler (Eds.): Handbook of Weighted Automata. Monographs in Theoretical Computer Science, Springer, 2009.
- · Aktuelle Forschungsbeiträge

Prüfung

Vortrag und schrifliche Ausarbeitung

Modul INF-0104 (= BScGl_SNS): Seminar Nebenläufige Systeme

4 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Robert Lorenz

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden sind in der Lage, ein Thema aus dem Gebiet "Nebenläufige Systeme" selbstständig zu erarbeiten, dieses klar, verständlich und überzeugend in Schrift und Vortrag zu präsentieren und sachlich über Vorträge zu diskutieren.

Sie verfügen über die dafür notwendige wissenschaftliche Methodik, Kommunikationsfähigkeit und Fähigkeit zum Einsatz neuer Medien.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken; Fertigkeit der Dokumentation und verständlichen, sicheren und überzeugenden Darstellung von Ideen, Konzepten und Ergebissen; Kommunikationsfähigkeit; Fähigkeit zum Einsatz neuer Medien; Eigenständiges Arbeiten mit englischsprachiger Fachliteratur; Qualitätsbewußtsein;

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen:

Modul Diskrete Strukturen für Informatiker (INF-0109) - empfohlen Modul Einführung in die Theoretische Informatik (INF-0110) - empfohlen Modul Logik für Informatiker (INF-0155) - empfohlen

Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
sws:	Wiederholbarkeit:	
2	siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Nebenläufige Systeme

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Aktuelle Forschungsbeiträge aus den Bereich "Modellierung, Simulation, Synthese und Verifikation nebenläufiger Systeme"

Literatur:

- J. Desel, W. Reisig, G. Rozenberg: Lectures on Concurrency and Petri Nets, Springer, Lecture Notes in Computer Science 3098, 2004
- Projekt-Homepage VipTool:

http://www.fernuni-hagen.de/sttp/forschung/vip_tool.shtml

- Projekt-Homepage SYNOPS:
 - http://www.informatik.uni-augsburg.de/lehrstuehle/inf/projekte/synops/
- · Aktuelle Forschungsbeiträge

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0105 (= BScGI_FLI): Forschungsmodul Lehrprofessur für Informatik

6 ECTS/LP

Research Module Teaching Professorship Informatics

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Robert Lorenz

Lernziele/Kompetenzen:

Nach der Teilnahme am Forschungsmodul verfügen die Studierenden über detailliertes und aktuelles Wissen auf einem der Gebiete "Nebenläufige Systeme" und "Semantische Dialogmodellierung" und sind in der Lage in Forschungsprojekten zu dem Gebiet aktiv mitzuarbeiten.

Sie verfügen über die Team- und Kommunikationsfähigkeit, die Fähigkeit zur Literaturrecherche und die Lern- und Arbeitstechniken, um Problemstellungen auf dem genannten Gebiet zu diskutieren, sowie Zwischenergebnisse kritisch zu bewerten, zu kombinieren und zu präsentieren.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken; Eigenständige Recherche in englischsprachiger Literatur; Verständliche, sichere und überzeugende Präsentation von Ideen, Konzepten und Ergebnissen; Qualitätsbewußtsein; Kommunikationsfähigkeit; Fertigkeit der Zusammenarbeit in Teams und Verstehen von Teamprozessen; Grundsätze guter wissenschaftlicher Praxis;

Arbeitsaufwand:

Gesamt: 180 Std.

165 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: Grundkenntnisse in einschlägigen Forschungsthemen des Lehrstuhls		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Forschungsmodul Lehrprofessur für Informatik

Lehrformen: Praktikum Sprache: Deutsch / Englisch

SWS: 1

Inhalte:

Mitarbeit an dem Entwurf und der Programmierung unterstützender Softwaretools und der Evaluation von Ergebnissen und Konzepten in aktuellen Forschungsprojekten des Lehrstuhls aus den Bereichen "Nebenläufige Systeme" und "Semantische Dialogmodellierung". Mögliche Themen: Synthese von Petrinetzen aus nichtsequentiellen Verhaltensbeschreibungen, Process Mining Techniken, Entfaltung von Petrinetzen und Entfaltungsbasiertes Model-Checking, Finite State Transducer in der semantischen Dialogmodellierung, Petrinetz-Transduktoren, Dialog-Strategien, Konfiguration von Spracherkennern, Benutzermodelle in der Spracherkennung, Wizard-of-Oz Experimente zur Erstellung lokaler Grammatiken, Unifikationsalgorithmen

Literatur:

- J. Desel, W. Reisig, G. Rozenberg: Lectures on Concurrency and Petri Nets, Springer, Lecture Notes in Computer Science 3098, 2004
- Projekt-Homepage VipTool: http://www.fernuni-hagen.de/sttp/forschung/vip_tool.shtml
- Projekt-Homepage SYNOPS:
 http://www.informatik.uni-augsburg.de/lehrstuehle/inf/projekte/synops/
- Daniel Jurafsky & James H. Martin: Speech and Language Processing
- M. Huber; C. Kölbl; R. Lorenz; R. Römer; G. Wirsching: Semantische Dialogmodellierung mit gewichteten Merkmal-Werte-Relationen. In: Rüdiger Hoffmann (Hrsg.), Elektronische Sprach-signalverarbeitung 2009, Tagungsband der 20. Konferenz, 2009, Studientexte zur Sprachkommunikation 54, Seiten 25-32
- M. Droste, W. Kuich, H. Vogler (Eds.): Handbook of Weighted Automata. Monographs in Theoretical Computer Science, Springer, 2009.
- A. Esposito (Eds.): Behavioral Cognitive Systems. LNCS 7403, Springer, 2012

Prüfung

Vortrag und schriftliche Ausarbeitung

Praktikum

Modul INF-0106 (= BScGI_PMLI): Praxismodul Lehrprofessur für Informatik

11 ECTS/LP

Practical Experience Module Teaching Professorship Informatics

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Robert Lorenz

Lernziele/Kompetenzen:

Nach der Teilnahme am Praxismodul verfügen die Studierenden über detailliertes und aktuelles Wissen auf dem Gebiet "Programmierung von Mehrbenutzer-Anwendungen mit grafischer oder web-basierter Benutzerschnittstelle und persistenter Datenhaltung" und sind in der Lage in Entwicklungsprojekten zu dem Gebiet aktiv mitzuarbeiten.

Sie verfügen über die Team- und Kommunikationsfähigkeit, um Problemstellungen auf dem genannten Gebiet zu erörtern, Fragen und Zwischenergebnisse zu diskutieren und zu präsentieren.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken; Eigenständige Recherche in Lehrbüchern, Handbüchern und Dokumentationen; Verständliche, sichere und überzeugende Präsentation von Ideen, Konzepten und Ergebnissen; Qualitätsbewußtsein; Kommunikationsfähigkeit; Fertigkeit der Zusammenarbeit in Teams und Verstehen von Teamprozessen; Kenntnisse von praxisrelevanten Aufgabenstellungen;

Bemerkung:

Dieses Modul dient als Ersatz für ein externes Betriebspraktikum.

Arbeitsaufwand:

Gesamt: 330 Std.

15 Std. Seminar (Präsenzstudium)315 Std. Praktikum (Selbststudium)

Voraussetzungen:

Fortgeschrittene Programmierkenntnisse in einer objektorientierten

Programmiersprache

Modul Informatik 1 (INF-0097) - empfohlen Modul Informatik 2 (INF-0098) - empfohlen Modul Programmierkurs (INF-0100) - empfohlen

Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Praxismodul Lehrprofessur für Informatik

Lehrformen: Praktikum Sprache: Deutsch / Englisch

SWS: 1

Inhalte:

Durchführung bzw. Unterstützung bei der Durchführung eines oder mehrerer kleinerer Software-

Entwicklungsprojekte zur Unterstützung der Verwaltung und der Lehre am Lehrstuhl, Ersatz für Betriebspraktikum

Literatur:

- Ch. Ullenboom, Java ist auch eine Insel, Galileo Computing, http://openbook.galileocomputing.de/javainsel/
- Ch. Ullenboom, Mehr als eine Insel, Galileo Computing, http://openbook.galileocomputing.de/java7/
- M. Campione und K. Walrath, Das Java Tutorial, Addison Wesley, http://docs.oracle.com/javase/tutorial/
- Java-Dokumentation: http://docs.oracle.com/javase/8/docs/ap
- B. Oesterreich, Objektorientierte Softwareentwicklung, Oldenbourg
- Gumm, Sommer: Einführung in die Informatik
- B. W. Kernighan, D. M. Ritchie, A.-T. Schreiner und E. Janich: Programmieren in C, Hanser
- C Standard Bibliothek: http://www2.hs-fulda.de/~klingebiel/c-stdlib/
- The GNU C Library: http://www.gnu.org/software/libc/manual/html_mono/libc.html

Prüfung

Projektabnahme

Praktikum, unbenotet

Modul INF-0110 (= BScGI_ETI): Einführung in die Theoretische Informatik

8 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Bernhard Möller

Lernziele/Kompetenzen:

Die Studierenden haben ein detailliertes Verständnis der Methoden zur formalen Beschreibung syntaktischer Strukturen, insbesondere Automaten und Grammatiken, sowie über Fragen der prinzipiellen Berechenbarkeit. Sie können diese in konkreten Fragestellungen anwenden.

Schlüsselqualifikationen: analytisch-methodische Kompetenz; Abwägen von Lösungsansätzen; Abstraktionsfähigkeit; Training des logischen Denkens; eigenständiges Arbeiten mit Lehrbüchern und englischsprachiger Fachliteratur; Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 240 Std.

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

60 Std. Vorlesung (Präsenzstudium) 30 Std. Übung (Präsenzstudium)

Voraussetzungen: Modul Diskrete Strukturen für Informatiker (INF-0109) - empfohlen		
Angebotshäufigkeit: jedes Sommersemester	Empfohlenes Fachsemester: ab dem 2.	Minimale Dauer des Moduls: 1 Semester
SWS : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Einführung in die Theoretische Informatik (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

Formale Sprachen, Grammatiken, Chomsky-Hierarchie, Regelsysteme, mathematische Maschinen (endliche Automaten, Kellerautomaten, Turingmaschinen)

Literatur:

- Eigenes Skriptum
- U. Schöning: Theoretische Informatik- kurz gefasst, Spektrum 2008
- J. Hopcroft, R. Motwani, J. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Pearson 2011

Zugeordnete Lehrveranstaltungen:

Einführung in die Theoretische Informatik (Vorlesung)

Die Vorlesung behandelt für die Informatik wichtige Strukturen der diskreten Mathematik, insbesondere formale Sprachen, Automaten und Turing-Maschinen. Die Anmeldung zu den Übungsgruppen erfolgt in der ersten Hälfte der ersten Vorlesungswoche über VV: https://thi-vv.informatik.uni-augsburg.de/vv/index.php

Modulteil: Einführung in die Theoretische Informatik (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Zugeordnete Lehrveranstaltungen:

Übung zu Einführung in die Theoretische Informatik (Übung)

Die Anmeldung zu den Übungsgruppen erfolgt in der ersten Hälfte der ersten Vorlesungswoche über VV: https://thi-vv.informatik.uni-augsburg.de/vv/index.php

... (weiter siehe Digicampus)

Prüfung

Einführung in die Theoretische Informatik (Klausur)

Klausur / Prüfungsdauer: 120 Minuten

Modul INF-0112 (= BScGl_GP): Graphikprogrammierung

8 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Bernhard Möller

Lernziele/Kompetenzen:

Die Studierenden haben ein vertieftes Verständnis der wesentlichen Grundlagentechniken für die Erstellung dreidimensionaler Bilder und Animationen. Sie haben zentrale Teile der vorgestellten Verfahren eigenständig programmiertechnisch umgesetzt und können diese in konkreten Fragestellungen anwenden.

Schlüsselqualifikationen: analytisch-methodische Kompetenz; Abwägen von Lösungsansätzen;

Abstraktionsfähigkeit; Training des logischen Denkens; Bearbeitung konkreter Fallbeispiele; eigenständiges Arbeiten mit Lehrbüchern und englischsprachiger Fachliteratur; Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 240 Std.

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

60 Std. Vorlesung (Präsenzstudium)

30 Std. Übung (Präsenzstudium)

Voraussetzungen:

Mathematik für Informatiker I + II (alternativ Analysis I + Lineare Algebra I)

empfohlen

Modul Informatik 1 (INF-0097) - empfohlen Modul Informatik 2 (INF-0098) - empfohlen

Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
	ab dem 4.	1 Semester
SWS:	Wiederholbarkeit:	
6	siehe PO des Studiengangs	

Modulteile

Modulteil: Graphikprogrammierung (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

Koordinaten und Transformationen, Projektionen und Kameramodelle, Sichtbarkeit, Farbmodelle, Beleuchtung und Schattierung, Texturen, Schattenberechnung, Raytracing, Animationstechniken, OpenGL/JOGL

Literatur:

- · Eigenes Skriptum
- M. Bender, M. Brill, Computergrafik ein anwendungsorientiertes Lehrbuch, Hanser 2006
- F. Hill, S. Kelley: Computer graphics using OpenGL, Pearson 2007

Modulteil: Graphikprogrammierung (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Graphikprogrammierung (Klausur)

Klausur / Prüfungsdauer: 120 Minuten

Modul INF-0113 (= BScGI_SPM): Seminar Programmiermethodik und Multimediale Informationssysteme für Bachelor

4 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Bernhard Möller

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden in der Lage, grundlegende Problemstellungen, Konzepte, Methoden, Verfahren, Techniken und Technologien auf dem Gebiet "Programmiermethodik und Multimediale Informationssysteme" selbstständig zu erarbeiten und bezogen auf ein spezielles Thema aus dem genannten Gebiet zu bewerten. Sie verfügen über die Arbeitstechniken, Kommunikationsfähigkeit und Fähigkeit zum Einsatz neuer Medien, um ein spezielles Thema in Wort und Schrift klar und verständlich zu präsentieren und Themenstellungen aus dem genannten Gebiet kritisch und argumentativ zu diskutieren.

Schlüsselqualifikationen: Erlernen von Präsentationstechniken, Literaturrecherche, Arbeit mit englischer Fachliteratur, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 120 Std.

30 Std. Seminar (Präsenzstudium)

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: in der Regel mind. 1x pro Studienjahr	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
sws : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Programmiermethodik und Multimediale Informationssysteme für Bachelor

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Themen aus den Bereichen "Theoretische Informatik", "Multimedia" oder "Datenbanken und Informationssysteme"

Literatur:

wird jeweils bekanntgegeben

Zugeordnete Lehrveranstaltungen:

Seminar über Theoretische Informatik (Seminar)

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0114 (= BScGl_FPM): Forschungsmodul Programmiermethodik und Multimediale Informationssysteme

6 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Bernhard Möller

Lernziele/Kompetenzen:

Nach der Teilnahme am Forschungsmodul sind die Studierenden in der Lage, Problemstellungen mittlerer Komplexität auf dem Gebiet "Programmiermethodik und Multimediale Informationssysteme" zu verstehen und weiterführende Konzepte, Methoden, Verfahren, Techniken und Technologien des genannten Gebiets in Forschungsprojekten zu analysieren. Sie verfügen über die Team- und Kommunikationsfähigkeit, die Fähigkeit zur Literaturrecherche und die Lern- und Arbeitstechniken, um Problemstellungen auf dem genannten Gebiet zu diskutieren sowie Zwischenergebnisse kritisch zu bewerten, zu kombinieren und zu präsentieren.

Schlüsselqualifikationen: analytisch-methodische Kompetenz; Abwägen von Lösungsansätzen; Abstraktionsfähigkeit; Training des logischen Denkens; Bearbeitung konkreter Fallbeispiele; eigenständiges Arbeiten mit Lehrbüchern und englischsprachiger Fachliteratur; Grundsätze guter wissenschaftlicher Praxis; Durchhaltevermögen; Erlernen von Präsentationstechniken; schriftliche Präsentation eigener Ergebnisse

Arbeitsaufwand:

Gesamt: 180 Std.

165 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Forschungsmodul Programmiermethodik und Multimediale Informationssysteme

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte:

Anwendung und Erweiterung von Kleene-Algebren, Halbringtheorie und automatisches Beweisen; Beiträge zur

Graphikprogrammierung; Datenbanken und Informationssysteme

Prüfung

Projektabnahme, Vortrag und Abschlussbericht

Praktikum

Modul INF-0115 (= BScGl_PMPM): Praxismodul Programmiermethodik und Multimediale Informationssysteme

11 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Bernhard Möller

Lernziele/Kompetenzen:

Nach der Teilnahme am Praxismodul sind die Studierenden in der Lage, grundlegende Problemstellungen auf dem Gebiet "Programmiermethodik und Multimediale Informationssysteme" zu verstehen und grundlegende Konzepte, Methoden, Verfahren, Techniken und Technologien aus dem genannten Gebiet in Entwicklungsprojekten anzuwenden. Sie verfügen über die Team- und Kommunikationsfähigkeit, um Problemstellungen auf dem genannten Gebiet zu erörtern, Fragen und Zwischenergebnisse zu diskutieren und zu präsentieren.

Schlüsselqualifikationen: analytisch-methodische Kompetenz; Abwägen von Lösungsansätzen; Abstraktionsfähigkeit; Training des logischen Denkens; Bearbeitung konkreter Fallbeispiele; eigenständiges Arbeiten mit Lehrbüchern und englischsprachiger Fachliteratur; Grundsätze guter wissenschaftlicher Praxis; Durchhaltevermögen; Erlernen von Präsentationstechniken; schriftliche Präsentation eigener Ergebnisse

Arbeitsaufwand:

Gesamt: 330 Std.

315 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Praxismodul Programmiermethodik und Multimediale Informationssysteme

Lehrformen: Praktikum Sprache: Deutsch

SWS: 1 Inhalte:

Ersatz für Betriebspraktikum

Literatur:

wissenschaftliche Papiere, Handbücher

Prüfung

Projektabnahme

Praktikum, unbenotet

Modul INF-0124 (= BScGI_SROB): Seminar Robotik

4 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Wolfgang Reif

Lernziele/Kompetenzen:

Die Studierenden sind in der Lage ein Thema aus dem Gebiet der Robotik selbstständig zu erarbeiten, geeignet in Schrift und Vortrag zu präsentieren und sachlich über Vorträge zu diskutieren.

Schlüsselqualifikationen: analytisch-methodische Kompetenz, Abwägen von Lösungsansätzen, Erwerb von Abstraktionsfähigkeiten, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Sommersemester	Empfohlenes Fachsemester: ab dem 4.	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Robotik Lehrformen: Seminar Sprache: Deutsch

SWS: 2

Inhalte:

Die konkreten Themen des Seminars beschäftigen sich mit dem Einsatz und der Programmierung von Robotern aller Art und werden jedes Jahr neu festgelegt und an aktuelle Entwicklungen angepasst.

Literatur:

abhängig von den konkreten Themen des Seminars

Zugeordnete Lehrveranstaltungen:

Seminar zu Robotik (Seminar)

Übergreifendes Thema dieses Seminars sind verschiedene Technologien und Herausforderungen von mobilen Robotern (z.B. mobile Plattformen oder Flugroboter). Die einzelnen Themen dieses Seminars befassen sich jeweils mit einem speziellen Aspekt, der für mobile Robotik wichtig ist. Insgesamt gibt das Seminar durch das breite Spektrum der Vorträge einen guten Überblick über die Thematik. Die Vorbesprechung zum Seminar findet in den ersten Vorlesungswochen statt, der genaue Termin wird noch bekanntgegeben. Die Vorträge werden nach Absprache an einem oder zwei Tagen nach der Vorlesungszeit stattfinden. Die Teilnehmerzahl ist beschränkt.

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0125 (= BScGI_SSI): Seminar Internetsicherheit

4 ECTS/LP

Version 2.0.0 (seit SoSe17)

Modulverantwortliche/r: Prof. Dr. Wolfgang Reif

Lernziele/Kompetenzen:

Die Studierenden sind in der Lage ein Thema aus dem Gebiet der Internetsicherheit selbstständig zu erarbeiten, geeignet in Schrift und Vortrag zu präsentieren und sachlich über Vorträge zu diskutieren.

Schlüsselqualifikationen: analytisch-methodische Kompetenz, Abwägen von Lösungsansätzen, Erwerb von Abstraktionsfähigkeiten, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: unregelmäßig (i. d. R. im SoSe)	Empfohlenes Fachsemester: ab dem 4.	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Internetsicherheit

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Die konkreten Themen des Seminars beschäftigen sich mit der Sicherheit von Computersystemen im Internet und werden jedes Jahr neu festgelegt und an aktuelle Entwicklungen angepasst.

Literatur:

Abhängig von den konkreten Themen des Seminars

Zugeordnete Lehrveranstaltungen:

Seminar zu Internetsicherheit (Seminar)

In dem Blockseminar werden aktuelle, ausgewählte Themen zur Computersicherheit, speziell zur Sicherheit im Internet, behandelt. Bitte schicken Sie gleich nach der Anmeldung drei Präferenzen für die unten aufgeführten Themen an kuzman.katkalov@informatik.uni-augsburg.de Achtung: Die Anmeldung kann nur nach Erhalt der Themenpräferenzen berücksichtigt werden! Themenverteilung, Betreuer und weiterer Ablauf werden dann über Digicampus bekannt gegeben. Anforderungen: - selbstständige Literatur-/Internetrecherche zu dem gewählten Thema. - Ausarbeitung und Halten eines Vortrags/einer Präsentation (45 Minuten inkl. Diskussion). - schriftliche Ausarbeitung/Bericht (15 - 20 Seiten), die zum Vortrag fertig ist. - aktive Teilnahme an den Vorträgen der anderen Teilnehmer (Anwesenheitspflicht). Die Vorträge finden als Blockseminar am 06.07. und 07.07. statt. Themen:

- 1. Paketfilterung mit nftables Seit 2014 setzt der Linux-Kernel nftables ein, um Netzwerkpakete zu filtern und zu klassifizieren.
- ... (weiter siehe Digicampus)

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0126 (= BScGI_SEIS): Seminar Software- und Systems Engineering (Bachelor)

4 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Wolfgang Reif

Lernziele/Kompetenzen:

Die Studierenden sind in der Lage ein Thema aus dem Gebiet der Softwaretechnik selbstständig zu erarbeiten, geeignet in Schrift und Vortrag zu präsentieren und sachlich über Vorträge zu diskutieren.

Schlüsselqualifikationen: analytisch-methodische Kompetenz, Abwägen von Lösungsansätzen, Erwerb von Abstraktionsfähigkeiten, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 120 Std.

30 Std. Seminar (Präsenzstudium)

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS:	Wiederholbarkeit:	

Modulteile

Modulteil: Seminar Software- und Systems Engineering (Bachelor)

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Die konkreten Themen des Seminars beschäftigen sich mit aktuellen Themen des Software- und Systems Engineering auf Bachelorniveau und werden jedes Jahr neu festgelegt und an neue Entwicklungen angepasst.

Literatur:

abhängig von den konkreten Themen des Seminars

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0127 (= BScGI_FSSE): Forschungsmodul Softwareund Systems Engineering

6 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Wolfgang Reif

Lernziele/Kompetenzen:

Die Studierenden verfügen über detailliertes und aktuelles Wissen auf dem Gebiet der Softwaretechnik und sind in der Lage, in Forschungsprojekten zu dem Gebiet aktiv mitzuarbeiten.

Schlüsselqualifikationen: Grundsätze guter wissenschaftlicher Praxis, selbstständiges Arbeiten, Erlernen des Arbeitens mit englischsprachiger Fachliteratur, analytisch-methodische Kompetenz

Arbeitsaufwand:

Gesamt: 180 Std.

165 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS:	Wiederholbarkeit:	

siehe PO des Studiengangs

Modulteile

1

Modulteil: Forschungsmodul Software- und Systems Engineering

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte:

Mitarbeit an aktuellen Forschungsthemen des Lehrstuhls

Literatur

abhängig von dem konkreten Projekt: wissenschaftliche Papiere, Dokumentation

Prüfung

Projektabnahme

Praktikum

Modul INF-0128 (= BScGI_PMSSE): Praxismodul Software- und Systems Engineering

11 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Wolfgang Reif

Lernziele/Kompetenzen:

Die Studierenden verfügen über detailliertes und aktuelles Wissen auf dem Gebiet der Softwaretechnik und sind in der Lage in Entwicklungsprojekten zu dem Gebiet aktiv mitzuarbeiten.

Schlüsselqualifikationen: selbstständiges Arbeiten, Fähigkeit zur Reflexion experimenteller Ergebnisse, analytischmethodische Kompetenz

Arbeitsaufwand:

Gesamt: 330 Std.

15 Std. Seminar (Präsenzstudium)315 Std. Praktikum (Selbststudium)

Voraussetzungen:		
keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS:	Wiederholbarkeit:	
1	siehe PO des Studiengangs	

Modulteile

Modulteil: Praxismodul Software- und Systems Engineering

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte:

Ersatz für das Betriebspraktikum

Literatur

abhängig von dem konkreten Projekt: Handbücher, Dokumentation

Prüfung

Projektabnahme

Praktikum, unbenotet

Modul INF-0138 (= BScGl_SI): Systemnahe Informatik

8 ECTS/LP

Version 1.1.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Theo Ungerer

Lernziele/Kompetenzen:

Nach Besuch der Vorlesung besitzen die Studierenden grundlegende Kenntnisse im Aufbau von Mikrorechnern, Mikroprozessoren, Pipelining, Assemblerprogrammierung, Parallelprogrammierung und Betriebssysteme. Sie sind in der Lage grundlegene Problemstellungen aus diesen Bereichen einzuschätzen und zu bearbeiten.

Schlüsselqualifikationen: Analytisch-methodische Kompetenz im Bereich der Systemnahen Informatik, Abwägung von Lösungsansätzen, Präsentation von Lösungen von Übungsaufgaben

Arbeitsaufwand:

Gesamt: 240 Std.

30 Std. Übung (Präsenzstudium)

60 Std. Vorlesung (Präsenzstudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

SWS:	Wiederholbarkeit:	
Sommersemester	ab dem 4.	1 Semester
Angebotshäufigkeit: jedes	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
Modul Informatik 1 (INF-0097) - empfohlen		
Voraussetzungen:		

siehe PO des Studiengangs

Modulteile

6

Modulteil: Systemnahe Informatik (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

Der erste Teil der Vorlesung gibt eine Einführung in die Mikroprozessortechnik. Es werden hier Prozessoraufbau und Mikrocomputersysteme behandelt und ein Ausblick auf Server und Multiprozessoren gegeben. Dieser Bereich wird in den Übungen durch Assemblerprogrammierung eines RISC-Prozessors vertieft. Im zweiten Teil der Vorlesung werden Grundlagen der Multicores und der parallelen Programmierung gelehrt. Der dritte Teil beschäftigt sich mit Grundlagen von Betriebssystemen. Die behandelten Themenfelder umfassen unter anderem Prozesse/Threads, Synchronisation, Scheduling und Speicherverwaltung. Die Übungen zur parallelen Programmierung und zu Betriebssystemtechniken runden das Modul ab.

Literatur:

- U. Brinkschulte, T. Ungerer: Mikrocontroller und Mikroprozessoren, 3. Auflage, Springer-Verlag, 2010
- D. A. Patterson, J. L. Hennessy: Computer Organization and Design, 5. Auflage, Elsevier, 2013
- D. A. Patterson, J. L. Hennessy: Rechnerorganisation und Rechnerentwurf, 5. Auflage, De Gruyter Oldenbourg, 2016
- A. S. Tanenbaum, H. Bos: Moderne Betriebssysteme, 4. Auflage, Pearson, 2016
- Theo Ungerer: Parallelrechner und parallele Programmierung, Spektrum-Verlag, 1997
- R. Brause: Betriebssysteme: Grundlagen und Konzepte, 3. Auflage Springer-Verlag, 2013

Zugeordnete Lehrveranstaltungen:

Systemnahe Informatik (Vorlesung)

Die Vorlesung ist in drei Teile geteilt: Rechnerarchitektur, Systemnahe Programmierung und Betriebssysteme. Der ersten beiden Teile geben eine Einführung in die Mikroprozessortechnik. Es werden hier Prozessoraufbau und Mikrocomputersysteme behandelt und ein Ausblick auf Server-Rechner und Multiprozessoren gegeben. Diese Bereiche werden in den Übungen durch Assemblerprogrammierung eines RISC-Prozessors sowie POSIX-Programmierung vertieft. Der dritte Teil beschäftigt sich mit den Grundlagen der Betriebssysteme. Stichpunkte hierbei sind Prozesse/Threads, Synchronisation, Scheduling und Speicherverwaltung. Bitte melden Sie sich ab Anfang April in VV für die Übungen an: https://thi-vv.informatik.uni-augsburg.de/vv/

Modulteil: Systemnahe Informatik (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Zugeordnete Lehrveranstaltungen:

Übung zu Systemnahe Informatik (Übung)

Bitte melden Sie sich ab Anfang April in VV für die Übungen an: https://thi-vv.informatik.uni-augsburg.de/vv/

Prüfung

Systemnahe Informatik (Klausur)

Klausur / Prüfungsdauer: 90 Minuten

Modul INF-0139 (= BScGl_MCP): Multicore-Programmierung

5 ECTS/LP

Version 1.0.0

Modulverantwortliche/r: Prof. Dr. Theo Ungerer

Lernziele/Kompetenzen:

Die Studierenden besitzen grundlegende Kentnisse verschiedener Paradigmen der Parallelprogrammierung (P-RAM, C++11, OpenMP, MPI, OpenCL, parallele Techniken in Java). Sie sind in der Lage, für eine Problemstellung die geeignete Parallelisierungmethode zu wählen und dabei Trade-offs der verschiedenen Methoden insbesondere C++11 vs. OpenMP vs. MPI vs. OpenCL abzuwägen. Weiterhin besitzen sie durch praktische Übungen grundlegende Programmierkenntnisse in den einzelnen parallelen Sprachen P-RAM, C++11, OpenMP, Java.

Schlüsselqualifikationen: Analytisch-methodische Kompetenz im Bereich der Multicore-Programmierung, Abwägung von Lösungsansätzen, Präsentation von Lösungen von Übungsaufgaben

Arbeitsaufwand:

Gesamt: 150 Std.

15 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

15 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vorlesung (Präsenzstudium)

30 Std. Übung (Präsenzstudium)

Voraussetzungen:

 $\label{lem:condition} \textbf{Kenntnisse in C- und Java-Programierung}.$

Modul Informatik 1 (INF-0097) - empfohlen

Modul Informatik 2 (INF-0098) - empfohlen

Modul Systemnahe Informatik (INF-0138) - empfohlen

Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 4	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Multicore-Programmierung (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 2

Inhalte:

Die Studierenden erlernen die theoretische Konzepte der Parallelprogrammierung (P-RAM, BSC, LogP), die wichtigen Synchronisations- und Kommunikationskonstrukte sowie verschiedene APIs und Sprachen der praktischen Parallelprogrammierung (C++11, OpenMP, MPI, OpenCL, parallele Techniken in Java). Weiterhin erhalten sie einen Einblick in die Architekturen von Multicore-Prozessoren, GPUs und Manycore-Prozessoren. Es wird ein Forschungsausblick auf Echtzeitaspekte in der parallelen Programmierung (Forschungsergebnisse der EU-Projekte MERASA und parMERASA) gegeben.

Literatur:

- Theo Ungerer: Parallelrechner und parallele Programmierung, Spektrum-Verlag 1997
- Thomas Rauber, Gudula Rüger: Parallele Programmierung, Springer-Verlag 2007.
- es werden die jeweils neuesten Java-, OpenCL- und Multicore-Unterlagen aus dem Internet sowie Unterlagen und Papers aus den EU-Projekten MERASA und parMERASA genutzt.

Modulteil: Multicore-Programmierung (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Multicore-Programmierung (Klausur) Klausur / Prüfungsdauer: 60 Minuten

Modul INF-0140 (= BScGl_PEB): Praktikum Hardwarenahe Programmierung

5 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Theo Ungerer

Lernziele/Kompetenzen:

Die Studierenden sind in der Lage grundlegende Projektaufgaben zu einer Themenstellung aus dem Gebiet der hardwarenahen Programmierung im Team zu planen, nach einem selbst entwickelten Projektplan zu lösen und die Resultate angemessen im Plenum zu diskutieren und zu präsentieren.

Schlüsselqualifikationen: Projektgebundene Erstellung von Softwarelösungen, Teamfähigkeit, Zeitmanagement

Arbeitsaufwand:

Gesamt: 150 Std.

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

60 Std. Praktikum (Präsenzstudium)

Voraussetzungen:

Modul Systemnahe Informatik (INF-0138) - empfohlen

,	, 1	
Angebotshäufigkeit: jedes	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
Wintersemester	ab dem 5.	1 Semester
sws:	Wiederholbarkeit:	
4	siehe PO des Studiengangs	

Modulteile

Modulteil: Praktikum Hardwarenahe Programmierung

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 4

Inhalte:

Im Rahmen des Praktikums werden grundlegende Techniken der hardwarenahen Programmierung sowie der Umgang mit den dafür benötigten Entwicklungswerkzeugen vermittelt. Auf einer eingebetteten Plattform wird die Implementierung verschiedener Standard-Aufgaben wie z.B. Ein-/Ausgabe und Ausnahmebehandlung geübt. Außerdem werden grundlegende Betriebssystemmechanismen implementiert.

Prüfung

Projektvorstellung und Projektabnahme

Praktikum

Modul INF-0141 (= BScGI_SMP): Seminar Grundlagen moderner Prozessorarchitekturen

4 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Theo Ungerer

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden in der Lage grundlegende Problemstellungen, Konzepte, Methoden, Verfahren, Techniken und Technologien auf dem Gebiet der Prozessorarchitekturen selbstständig zu erarbeiten und zu verstehen. Sie verfügen über die Arbeitstechniken, Kommunikationsfähigkeit und Fähigkeit zum Einsatz entsprechender Medien, um ein spezielles Thema in Wort und Schrift klar und verständlich zu präsentieren und Themenstellungen aus dem genannten Gebiet kritisch und argumentativ zu diskutieren.

Schlüsselqualifikationen: Grundsätze guter wissenschaftlicher Praxis, Zeitmanagement, Literaturrecherche, Arbeit mit englischsprachiger Fachliteratur

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Sommersemester	Empfohlenes Fachsemester: ab dem 4.	Minimale Dauer des Moduls: 1 Semester
sws : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Grundlagen moderner Prozessorarchitekturen

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Im Seminar werden Architekturen und Technologien moderner Prozessoren aus Forschung und Industrie behandelt. Jeder Seminarteilnehmer erhält individuelle Literaturhinweise, die dann im Laufe des Seminars durch weitere eigenständig erarbeitete Referenzen ergänzt werden sollen. Abschluss des Seminars stellt eine schriftliche Ausarbeitung sowie ein Vortrag über das behandelte Thema dar.

Literatur:

individuell gegeben und Selbstrecherche

Zugeordnete Lehrveranstaltungen:

Seminar Grundlagen moderner Prozessorarchitekturen (Seminar)

Der Schwerpunkt liegt dieses Semester auf neuartigen Technologien und wie sie die Prozessorarchitektur beeinflussen könnten. Mögliche Themen sind Nanotubes, Graphen, 3D-Stacking, Spintronik, Memristoren, Quantencomputer, künstliche neuronale Netze, nichtflüchtige Speicher, ...

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0142 (= BScGI_CPS): Seminar Cyber-Physical Systems

4 ECTS/LP

Version 1.0.0 (seit WS12/13)

Modulverantwortliche/r: Prof. Dr. Theo Ungerer

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden in der Lage, grundlegende Problemstellungen, Konzepte, Methoden, Verfahren, Techniken und Technologien auf dem Gebiet der Cyber-Physical Systems selbstständig zu erarbeiten und zu verstehen. Sie verfügen über die Arbeitstechniken, Kommunikationsfähigkeit und Fähigkeit zum Einsatz neuer Medien, um ein spezielles Thema in Wort und Schrift klar und verständlich zu präsentieren und Themenstellungen aus dem genannten Gebiet kritisch und argumentativ zu diskutieren.

Schlüsselqualifikationen: Grundsätze guter wissenschaftlicher Praxis, Zeitmanagement, Literaturrecherche, Arbeit mit englischsprachiger Fachliteratur

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
sws : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Cyber-Physical Systems

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Im Seminar werden Themen aus dem Bereich der Cyber-Physical Systems behandelt. Jeder Seminarteilnehmer erhält individuelle Literaturhinweise, die dann im Laufe des Seminars durch weitere eigenständig erarbeitete Referenzen ergänzt werden sollen. Abschluss des Seminars stellt eine schriftliche Ausarbeitung sowie ein Vortrag über das behandelte Thema dar.

Literatur:

individuell gegeben und Selbstrecherche

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0143 (= BScGI_FSIK): Forschungsmodul Systemnahe Informatik und Kommunikationssysteme

6 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Theo Ungerer

Lernziele/Kompetenzen:

Nach der Teilnahme am Forschungsmodul sind die Studierenden in der Lage Problemstellungen mittlerer Komplexität auf dem Gebiet der Systemnahen Informatik zu verstehen und weiterführende Konzepte, Methoden, Verfahren, Techniken und Technologien des genannten Gebiets in Forschungsprojekten zu analysieren. Sie verfügen über Team- und Kommunikationsfähigkeit, die Fähigkeit zur Literaturrecherche und die Lern- und Arbeitstechniken, um Problemstellungen auf dem genannten Gebiet zu diskutieren sowie Zwischenergebnisse kritisch zu bewerten, zu kombinieren und zu präsentieren.

Schlüsselqualifikationen: Selbständige Arbeit, Zeitmanagement, Literaturrecherche zu angrenzenden Themen, Arbeit mit englischsprachiger Fachliteratur, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 180 Std.

15 Std. Seminar (Präsenzstudium)165 Std. Praktikum (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Forschungsmodul Systemnahe Informatik und Kommunikationssysteme

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte:

Mitarbeit an aktuellen Forschungsthemen.

Literatur:

wissenschaftliche Papiere, Handbücher

Prüfung

Vortrag und schriftliche Ausarbeitung

Praktikum

Modul INF-0144 (= BScGI_PMSIK): Praxismodul Systemnahe Informatik und Kommunikationssysteme

11 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Theo Ungerer

Lernziele/Kompetenzen:

Nach der Teilnahme am Praxismodul sind die Studierenden in der Lage grundlegende Problemstellungen auf dem Gebiet der Systemnahen Informatik zu verstehen und grundlegende Konzepte, Methoden, Verfahren, Techniken und Technologien aus dem genannten Gebiet in Entwicklungsprojekten anzuwenden. Sie verfügen über Team- und Kommunikationsfähigkeit, um Problemstellungen auf dem genannten Gebiet zu erörtern, Fragen und Zwischenergebnisse zu diskutieren und zu präsentieren.

Schlüsselqualifikationen: Eigenständige Arbeit im Gruppenumfeld, Zeitmanagement

Arbeitsaufwand:

Gesamt: 330 Std.

315 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Praxismodul Systemnahe Informatik und Kommunikationssysteme

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte:

Ersatz für Betriebspraktikum. Mitarbeit in einem Forschungsprojekt am Lehrstuhl.

Literatur:

wissenschaftliche Papiere, Handbücher

Prüfung

Projektabschluss: Vortrag und Abschlussbericht

Praktikum, unbenotet

Modul INF-0151 (= BScGl_PMP): Praktikum Multicore-Programmierung

5 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Theo Ungerer

Lernziele/Kompetenzen:

Die Studierenden sind in der Lage Projektaufgaben zu einer Themenstellung aus dem Gebiet der parallelen Programmierung von Multicores im Team zu planen, nach einem selbst entwickelten Projektplan zu lösen und die Resultate angemessen im Plenum zu diskutieren und zu präsentieren.

Schlüsselqualifikationen: Projektgebundene Arbeit und Zeitmanagement

Arbeitsaufwand:

Gesamt: 150 Std.

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

60 Std. Praktikum (Präsenzstudium)

Voraussetzungen:

Modul Multicore-Programmierung (INF-0139) - empfohlen

The same of the sa		
Angebotshäufigkeit: wurde ersetzt	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
durch INF-0216	ab dem 1.	1 Semester
SWS:	Wiederholbarkeit:	
4	siehe PO des Studiengangs	

Modulteile

Modulteil: Praktikum Multicore-Programmierung

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 4

Inhalte:

Techniken der Parallelprogrammierung und verschiedene APIs zur Parallelprogrammierung (MPI, GPU-Programmierung mit OpenCL, Boost Threads, transaktionaler Speicher)

Literatur:

- Thomas Rauber, Gundula Rüger: Parallele Programmierung, Springer Verlag 2007.
- es werden die jeweils neuesten Java-, OpenCL- und Multicore-Unterlagen aus dem Internet verwendet

Prüfung

Projektvorstellung und Projektabnahme

Praktikum

Modul INF-0155 (= BScGl_Linf): Logik für Informatiker

6 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Walter Vogler

Lernziele/Kompetenzen:

Nach der Teilnahme können die Studierenden prädikaten- und temporallogische Formeln verstehen sowie Formeln entwickeln, um gegebene Sachverhalte auszudrücken. Sie haben zudem Kenntnisse über verschiedene Kalküle, was ihnen die Einarbeitung in neue Logiken und Kalküle ermöglicht und sie in die Lage versetzt, logisch und abstrakt zu argumentieren sowie solche Argumentationen zu analysieren. Sie sind damit auf weiterführende Vorlesungen zur System- und speziell Softwareverifikation vorbereitet.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken;

Qualitätsbewusstsein, Akribie; Fertigkeit zur Analyse von Informatikproblemstellungen

Arbeitsaufwand:

Gesamt: 180 Std.

45 Std. Vorlesung (Präsenzstudium) 30 Std. Übung (Präsenzstudium)

22 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium) 60 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

23 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 3.	Minimale Dauer des Moduls: 1 Semester
SWS : 5	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Logik für Informatiker (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 3

Inhalte:

Syntax und Semantik der Prädikatenlogik, Hilbert-Kalkül für Aussagen- und Prädikatenlogik, Einführung in Resolution und Gentzen-Kalkül für Aussagenlogik, Einführung in die Hoare-Logik und die temporale Logik (Gesetze für LTL und CTL, CTL-Model-Checking)

Literatur:

- H.-D. Ebbinghaus, J. Flum, W. Thomas: Einführung in die mathematische Logik
- M. Huth, M. Ryan: Logic in Computer Science. Modelling and reasoning about systems. Cambridge University Press
- M. Kreuzer, S. Kühling: Logik für Informatiker
- · U. Schöning: Logik für Informatiker

Modulteil: Logik für Informatiker (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Logik für Informatiker (Klausur)

Klausur / Prüfungsdauer: 100 Minuten

Modul INF-0156 (= BScGI_APP): Algebraische Beschreibung paralleler Prozesse

6 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Walter Vogler

Lernziele/Kompetenzen:

Die Studierenden besitzen die Fähigkeit, verteilte Systeme auf eine exakte, algebraische Weise (nämlich in der Prozessalgebra CCS) zu modellieren. Sie kennen einen Mechanismus, mit dem man in derartigen Ansätzen eine operationale Semantik definieren kann, und sind dadurch in der Lage, auch andere Prozessalgebren anzuwenden. Sie wissen, welche Anforderungen man an Äquivalenzbegriffe stellen muss und können formal prüfen, ob ein System eine, ebenfalls in CCS geschriebene, Spezifikation erfüllt.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken; Fertigkeit zur Analyse und Strukturierung von Informatikproblemstellungen; Qualitätsbewusstsein, Akribie

Arbeitsaufwand:

Gesamt: 180 Std.

15 Std. Übung (Präsenzstudium)

45 Std. Vorlesung (Präsenzstudium)

23 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

75 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

22 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

Voraussetzungen:

Modul Einführung in die Theoretische Informatik (INF-0110) - empfohlen

Modul Logik für Informatiker (INF-0155) - empfohlen

modul zogik far informatikor (ir ti 1000)	, emplemen	
Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
	ab dem 5.	1 Semester
SWS:	Wiederholbarkeit:	
4	siehe PO des Studiengangs	

Modulteile

Modulteil: Algebraische Beschreibung paralleler Prozesse (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 3

Inhalte:

Algebraische Spezifikation verteilter Systeme mittels der Prozessalgebra CCS; operationale Semantik mittels SOS-Regeln; Äquivalenz- bzw. Kongruenzbegriffe (starke und schwache Bisimulation, Beobachtungskongruenz); Nachweis von Kongruenzen mittels Axiomen; Einführung in eine Kombination von Bisimulation und Effizienzvergleich

Literatur:

- R. Milner: Communication and Concurrency, Prentice Hall
- L. Aceto, A. Ingolfsdottir, K.G. Larsen, J. Srba: Reactive Systems. Cambridge University Press 2007
- J. Bergstra, A. Ponse, S. Smolka (eds.): Handbook of Process Algebras, Elsevier

Modulteil: Algebraische Beschreibung paralleler Prozesse (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 1

Prüfung

Algebraische Beschreibung paralleler Prozesse (mündliche Prüfung)

Mündliche Prüfung / Prüfungsdauer: 30 Minuten

Modul INF-0157 (= BScGI_EA): Endliche Automaten

5 ECTS/LP

Version 1.0.0

Modulverantwortliche/r: Prof. Dr. Walter Vogler

Lernziele/Kompetenzen:

Nach der Teilnahme können die Studierenden deterministische Automaten minimieren und das Verfahren mit guter Effizienz automatisieren. Sie haben vertiefte Kenntnisse zur Modellierung von Problemen mit endlichen Automaten und können sich in neue Anwendungen der Automatentheorie einarbeiten. Insbesondere können sie Schaltkreisverhalten und Mealy-Automaten ineinander übersetzen, und sie können mit geeigneten Ergebnissen reguläre von nicht-regulären Sprachen unterscheiden.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken; Qualitätsbewusstsein, Akribie

Arbeitsaufwand:

Gesamt: 150 Std.

20 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

48 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

37 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

45 Std. Vorlesung (Präsenzstudium)

Voraussetzungen: Modul Einführung in die Theoretische Informatik (INF-0110) - empfohlen Modul Informatik 3 (INF-0111) - empfohlen		
Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
sws : 3	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Endliche Automaten (Vorlesung mit integrierter Übung)

Lehrformen: Vorlesung + Übung

Sprache: Deutsch

SWS: 3

Inhalte:

Die Vorlesung vertieft die Kenntnisse über Endliche Automaten aus der Grundvorlesung "Einführung in die theoretische Informatik". Sie behandelt Minimierung, Abschlusseigenschaften und eine Anwendung bei der Lösung diophantischer Gleichungen. Sie stellt Mealy-, Moore- und Büchi-Automaten vor.

Literatur:

- Hopcroft, (Motwani, Ullman: Introduction to Automata Theory, Languages and Computation; deutsch: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie
- · Schöning: Theoretische Informatik kurz gefaßt. 5. Auflage
- Thomas: Automata on Infinite Objects. Chapter 4 in Handbook of Theoretical Computer Science, Hrsg. van Leeuwen

Prüfung

Endliche Automaten (mündliche Prüfung)

Mündliche Prüfung / Prüfungsdauer: 30 Minuten

Modul INF-0158 (= BScGI_STVS): Seminar Theorie verteilter Systeme B

4 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Walter Vogler

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden in der Lage, grundlegende Problemstellungen, Konzepte, Methoden, Verfahren und Techniken auf dem Gebiet "Theorie verteilter Systeme" zu verstehen und bezogen auf ein spezielles Thema aus dem genannten Gebiet zu bewerten. Sie verfügen über die Arbeitstechniken, Kommunikationsfähigkeit und Fähigkeit zum Einsatz neuer Medien, um ein spezielles Thema in Wort und Schrift klar und verständlich zu präsentieren und Themenstellungen aus dem genannten Gebiet kritisch und argumentativ zu diskutieren.

Schlüsselquialifikationen: Fertigkeit der sicheren und überzeugenden Darstellung von Konzepten und formaler Argumentationen; Grundsätze guter wissenschaftlicher Praxis;

Fertigkeit zum logischen, analytischen und konzeptionellen Denken

Arbeitsaufwand:

Gesamt: 120 Std.

30 Std. Seminar (Präsenzstudium)

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester: ab dem 1.	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Theorie verteilter Systeme B

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Es werden Arbeiten zu verschiedenen Themen aus dem Bereich "Theorie verteilter Systeme" behandelt.

Literatur

wird jeweils bekanntgegeben

Prüfung

Schriftliche Ausarbeitung

Modul INF-0159 (= BScGl_FTVS): Forschungsmodul Theorie verteilter Systeme

6 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Walter Vogler

Lernziele/Kompetenzen:

Nach der Teilnahme am Forschungsmodul sind die Studierenden in der Lage, Problemstellungen mittlerer Komplexität auf dem Gebiet "Theorie verteilter Systeme" zu verstehen und weiterführende Konzepte, Methoden, Verfahren, Techniken und Technologien des genannten Gebiets in Forschungsprojekten zu analysieren. Sie verfügen über die Team- und Kommunikationsfähigkeit, die Fähigkeit zur Literaturrecherche und die Lern- und Arbeitstechniken, um Problemstellungen auf dem genannten Gebiet zu diskutieren sowie Zwischenergebnisse kritisch zu bewerten, zu kombinieren und zu präsentieren.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken; Qualitätsbewusstsein, Akribie

Arbeitsaufwand:

Gesamt: 180 Std.

15 Std. Seminar (Präsenzstudium)165 Std. Praktikum (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS:	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Forschungsmodul Theorie verteilter Systeme

Lehrformen: Praktikum Sprache: Deutsch

SWS: 1

Inhalte:

aktuelle Forschungsthemen in der Theorie verteilter Systeme

Literatur:

wissenschaftliche Papiere, evtl. Handbücher

Prüfung

Projektabnahme und schriftliche Ausarbeitung

Praktikum

Modul INF-0160 (= BScGI_PMTVS): Praxismodul Theorie verteilter Systeme

11 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: Prof. Dr. Walter Vogler

Lernziele/Kompetenzen:

Nach der Teilnahme am Praxismodul sind die Studierenden in der Lage, grundlegende Problemstellungen auf dem Gebiet "Theorie verteilter Systeme" zu verstehen und

grundlegende Konzepte, Methoden, Verfahren, Techniken und Technologien aus dem genannten Gebiet in Entwicklungsprojekten anzuwenden. Sie verfügen über die Team- und Kommunikationsfähigkeit, um Problemstellungen auf dem genannten Gebiet zu erörtern, Fragen und Zwischenergebnisse zu diskutieren und zu präsentieren.

Schlüsselqualifikationen: selbständiges Arbeiten, analytisch-methodische Kompetenz, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 330 Std.

315 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS:	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Praxismodul Theorie verteilter Systeme

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 1

Inhalte:

Ersatz für Betriebspraktikum. Mitarbeit in einem Forschungsprojekt am Lehrstuhl

Literatur:

wissenschaftliche Papiere, Handbücher

Prüfung

Projektabnahme

Praktikum, unbenotet

Modul INF-0166 (= BScGI_MM2): Multimedia Grundlagen II

8 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Elisabeth André

Lernziele/Kompetenzen:

Die Studierenden beherrschen wesentliche Grundlagen und Techniken zu Entwurf, Realisierung und Evaluation von Systemen der multimodalen Mensch-Maschine In-teraktion. Sie sind in der Lage, diese Techniken auf vorgegebene Problemstellungen sicher anzuwenden.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken

Arbeitsaufwand:

Gesamt: 240 Std.

60 Std. Vorlesung (Präsenzstudium) 30 Std. Übung (Präsenzstudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

Voraussetzungen:		
Programmiererfahrung		
Modul Multimedia Grundlagen I (INF-00	087) - empfohlen	
Angebotshäufigkeit: jedes	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
Sommersemester	ab dem 3.	1 Semester
OMO		
SWS:	Wiederholbarkeit:	

Modulteile

Modulteil: Multimedia Grundlagen II (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

Interaktionsformen und -metaphern, Erkennung und Interpretation von Benutzereingaben, Generierung und Synchronisation von Systemausgaben, Multimodale Dialogsysteme, Benutzer- und Diskursmodellierung, Agentenbasierte Multimodale Interaktion, Evaluation von multimodalen Benutzerschnittstellen, Benutzungsschnittstellen der nächsten Generation (Perzeptive Interfaces, Emotionale Interfaces, Mensch-Roboter Interaktion etc.)

Literatur:

- Schenk, G. Rigoll: Mensch-Maschine-Kommunikation: Grundlagen von sprach- und bildbasierten Benutzerschnittstellen
- Daniel Jurafsky, James H. Martin: Speech and Language Processing. Pearson Prentice Hall
- T. Mitchell: Machine Learning, McGraw Hill

Zugeordnete Lehrveranstaltungen:

Multimedia Grundlagen II (Vorlesung)

Die Entwicklung multipler Medien zur Informationsdarbietung und zur Gestaltung der Mensch-Maschine-Schnittstelle hat in nur wenigen Jahren den Umgang mit Computern grundlegend verändert und wesentlich dazu beigetragen, Computertechnologie einer breiten Benutzerschicht zugänglich zu machen. Als Einstieg in den Bereich "Informatik und Multimedia" vermittelt diese Vorlesung wichtige Grundlagen und Methoden zur Produktion, Verarbeitung, Speicherung und Distribution von digitalen Medien. Die erfolgreiche Teilnahme an dieser Veranstaltung und den begleitenden praktischen Übungen ist die Voraussetzung für den Erwerb des

Bachelors für "Informatik und Multimedia". Die Veranstaltung kann auch von Bachelor- und Diplomstudierenden anderer Informatik-Studiengänge als Wahlpflichtfach bzw. Hauptstudiumsveranstaltung (Bereich "Multimediale Informationsverarbeitung") eingebracht werden.

... (weiter siehe Digicampus)

Modulteil: Multimedia Grundlagen II (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Zugeordnete Lehrveranstaltungen:

Multimedia Grundlagen II - Übungsbetrieb (Übung) siehe "Vorlesung: Multimedia Grundlagen II"

Prüfung

Multimedia Grundlagen II Klausur

Klausur / Prüfungsdauer: 90 Minuten

Modul INF-0167 (= BScGI_DSP): Digital Signal Processing I

6 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: PD Dr. Jonghwa Kim

Lernziele/Kompetenzen:

Die Studierenden verfügen über grundlegende Konzepten der System- und Signaltheorie und verschiedene Analyseverfahren im Zeit- und im Frequenzbereich und sind in der Lage, unbekannte Parameter und Eigenschaften von Signalen durch verschiedene Transformationsmethoden zu bestimmen und die erworbenen theoretischen Kenntnisse auf Multimedia-Daten in MATLAB anzuwenden.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken

Arbeitsaufwand:

Gesamt: 180 Std.

60 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

60 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

60 Std. Vorlesung (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: wird nicht mehr angeboten!	Empfohlenes Fachsemester: ab dem 2.	Minimale Dauer des Moduls: 1 Semester
SWS: 4	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Digital Signal Processing I (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

Die Vorlesung bietet eine Einführung in folgende Themenbereiche: Systemtheorie (Differentialgleichungen, Impulsantwort, z-Transformation, Frequenzgang usw.), LTI-Systeme, Abtasttheorem, Signaldarstellung in komplexer Ebene, Fourierreihe, Spektralanalyse und Fourier-Transformation. Die Vorlesung wird ergänzt durch MATLAB-Übungen. In der darauffolgenden Vorlesung "Digital Signal Processing II" haben die Studierenden die Möglichkeit, ihre Kenntnisse und Fähigkeiten in dem Bereich zu vertiefen.

Literatur:

- Alan V. Oppenheim and Roland W. Schafer, "Discrete-Time Signal Processing", Prentice Hall
- K. Mitra, "Digital Signal Processing: A Computer-Based Approach", McGraw-Hill

Prüfung

Digital Signal Processing I (Klausur)

Klausur / Prüfungsdauer: 100 Minuten

Modul INF-0168 (= BScGl_E3D): Einführung in die 3D-Gestaltung

6 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Elisabeth André

Lernziele/Kompetenzen:

Die Studierenden sind in der Lage, visuelle Medienprodukte unter technischen und ästhetischen Aspekten zu bewerten und in Form von 3D-Grafik und Animation selbst zu schaffen.

Schlüsselqualifikationen: Fertigkeit zum logischen, analytischen und konzeptionellen Denken, Fertigkeit der sicheren und überzeugenden Darstellung von Ideen und Konzepten, Kenntnisse der Denkweise und Sprache anwendungsrelevanter Disziplinen

Arbeitsaufwand:

Gesamt: 180 Std.

15 Std. Übung (Präsenzstudium)

45 Std. Vorlesung (Präsenzstudium)

75 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

23 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

22 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: wird nicht mehr angeboten!	Empfohlenes Fachsemester: ab dem 3.	Minimale Dauer des Moduls: 1 Semester
SWS: 4	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Einführung in die 3D-Gestaltung (Vorlesung)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 3

Inhalte:

Allgemeine Gestaltungsprinzipien, Konzipieren mit dem Storyboard, 3D-Modellierungsverfahren, Texturen und Materialien, Beleuchtungsmodelle und Schatten, Kamera und Perspektive, Animation und Bewegung, Unendlichkeit und Weite, Partikelsysteme.

Literatur:

- · Farbe, Licht, Textur:
- · Jeremy Birn, »Digital Lighting and Rendering«
- · Owen Demers, »Digital Texturing & Painting«
- Tom Fraser, »Farbe im Design«. Animation:
- H. Whitaker, J. Halas, »Timing for Animation«
- Tony White, »Animation from Pencils to Pixels. Classical Techniques for the Digital Animator«. Character Design:
- · Jason Osipa, Stop Staring
- E. Allen, K.L. Murdock, J. Fong, A.G. Sidwell, »Body Language: Advanced 3D Character Rigging«
- Preston Blair, »Zeichentrickfiguren leichtgemacht« (Walkcycles, Aufbau von Figuren, ...);
- Michael D. Mattesi, »Force. Dynamic Life Drawing for Animators« (Bewegung, grafische Strich- und Formdynamik);
- Tony Mullen, »Introducing Character Animation with Blender« (auch Blender allgemein). Storyboard:
- · Will Eisner, »Graphic Storytelling and visual narrative«
- · John Hart, »The Art of the Storyboard«
- Jens Eder, »Dramaturgie des populären Films«

Modulteil: Einführung in die 3D-Gestaltung (Übung)

Lehrformen: Übung **Sprache:** Deutsch

SWS: 1

Prüfung

Vortrag mit Präsentation

Projektarbeit

Modul INF-0171 (= BScGI_FMDI): Fundamental Issues in Multimodal Dialogue and Interaction

4 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Elisabeth André

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden in der Lage, grundlegende Problemstellungen, Konzepte, Methoden, Verfahren, Techniken und Technologien auf dem Gebiet "Multimodal Dialogue and Interaction" selbstständig zu erarbeiten und bezogen auf ein spezielles wissenschaftlich anspruchsvolles Thema aus dem gennnten Gebiet zu bewerten.

Schlüsselqualifikationen: Fertigkeit der sicheren und überzeugenden Darstellung von Ideen und Konzepten

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester: ab dem 1.	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Fundamental Issues in Multimodal Dialogue and Interaction (Seminar)

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Ausgewählte Themen aus dem Bereich "Multimodal Dialogue and Interaction"

Literatur:

Literaturhinweise werden bei der Vorbesprechung bekanntgegeben.

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0172 (= BScGI_SSPR): Seminar Selected Topics in Signal and Pattern Recognition

4 ECTS/LP

Version 1.0.0 (seit SoSe14)

Modulverantwortliche/r: PD Dr. Jonghwa Kim

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden in der Lage, grundlegende Problemstellungen, Konzepte, Methoden, Verfahren, Techniken und Technologien auf dem Gebiet "Signal and Pattern Recognition" selbstständig zu erarbeiten und bezogen auf ein spezielles Thema aus dem genannten Gebiet zu bewerten.

Sie verfügen über die Arbeitstechniken, Kommunikationsfähigkeit und Fähigkeit zum Einsatz neuer Medien, um ein spezielles Thema in Wort und Schrift klar und verständlich zu präsentieren und Themenstellungen aus dem genannten Gebiet kritisch und argumentativ zu diskutieren.

Schlüsselqualifikationen: Erlernen von Präsentationstechniken, Literaturrecherche, Arbeit mit englischer Fachliteratur, Grundsätze guter wissenschaftlicher Praxis

Arbeitsaufwand:

Gesamt: 120 Std.

30 Std. Seminar (Präsenzstudium)

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: wird nicht mehr angeboten!	Empfohlenes Fachsemester: ab dem 2.	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Selected Topics in Signal and Pattern Recognition

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Der Themenbereich für dieses Seminar wird jährlich unter Berücksichtigung neuer Trends in der Signalanalyse und Mustererkennung neu festgelegt.

Literatur:

aktuelle Forschungsliteratur

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0173 (= BScGl_FHCM): Forschungsmodul Human-Centered Multimedia

6 ECTS/LP

Version 1.0.0 (seit SoSe13)

Modulverantwortliche/r: Prof. Dr. Elisabeth André

Lernziele/Kompetenzen:

Nach der Teilnahme am Forschungsmodul sind die Studierenden in der Lage, Problemstellungen mittlerer Komplexität auf dem Gebiet "Human-Centered Multimedia" zu verstehen und weiterführende Konzepte, Methoden, Verfahren, Techniken und Technologien des genannten Gebiets in Forschungsprojekten zu analysieren. Sie verfügen über die Team- und Kommunikationsfähigkeit, die Fähigkeit zur Literaturrecherche und die Lern- und Arbeitstechniken, um Problemstellungen auf dem genannten Gebiet zu diskutieren sowie

Zwischenergebnisse kritisch zu bewerten, zu kombinieren und zu präsentieren.

Schlüsselqualifikationen: Fertigkeit der sicheren und überzeugenden Darstellung von Ideen und Konzepten; Kenntnisse der Denkweise und Sprache anwendungsrelevanter Disziplinen; Verstehen von Teamprozessen; Fertigkeit der Zusammenarbeit in Teams; Fähigkeit zur Leitung von Teams; Fertigkeit zur verständlichen Darstellung und Dokumentation von Ergebnissen; Fähigkeit, vorhandenes Wissen selbstständig zu erweitern; Fähigkeit, Beiträge zur Wissenschaft zu leisten: Qualitätsbewusstsein, Akribie

Arbeitsaufwand:

Gesamt: 180 Std.

165 Std. Praktikum (Selbststudium)15 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 1	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Forschungsmodul Human-Centered Multimedia

Lehrformen: Praktikum Sprache: Deutsch

SWS: 1

Inhalte:

Mitarbeit an aktuellen Forschungsthemen im Bereich des Human-Centered Multimedia.

Literatur:

Literaturhinweise werden je nach Thema zu Beginn des Moduls gegeben.

Prüfung

Projektabnahme und Vortrag

Praktikum

Modul INF-0188 (= BScGl_SAD): Seminar Algorithmen und Datenstrukturen für Bachelor 4 ECTS/LP

Version 1.0.0

Modulverantwortliche/r: Prof. Dr. Torben Hagerup

Lernziele/Kompetenzen:

Beherrschung der Grundlagen des wissenschaftlichen Arbeitens; Fähigkeit zu guter schriftlicher und mündlicher Kommunikation wissenschaftlicher Sachverhalte.

Schlüsselqualifikationen: Lern- und Arbeitstechniken; Kommunikationsfähigkeit; Fähigkeit zur Literaturrecherche und zum Einsatz neuer Medien

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen:

Empfehlenswert: Gutes Verständnis des Informatik III-Stoffes.

Emplemenswert. Gutes verstandnis des informatik inf-Stories.		
Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
	ab dem 5.	1 Semester
SWS:	Wiederholbarkeit:	
2	siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Algorithmen und Datenstrukturen

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Aktuelle und klassische Themen aus dem Bereich Algorithmen und Datenstrukturen werden anhand von Originalliteratur behandelt.

Literatur:

Ausgewählte wissenschaftliche Artikel.

Prüfung

Schriftliche Ausarbeitung und Vortrag

Modul INF-0218: Seminar Architektur- und Technologiekonzepte (BA)

4 ECTS/LP

Version 1.0.0 (seit SoSe16)

Modulverantwortliche/r: Prof. Dr. Bernhard Bauer

Lernziele/Kompetenzen:

Die immer weiter fortschreitende Digitalisierung beschränkt sich nicht mehr nur auf die Automatisierung von (Produktions-)Prozessen, sondern weitet sich auf die Produkte von etablierten Unternehmen aus. Es geht darum digitale Produkte möglichst schnell umzusetzen um innovative Ideen zu testen und Marktanteile sichern zu können. Mit diesem Wandel ergeben sich neue Anforderungen an die einzusetzenden Software-Architekturen und Technologien – ein Beispiel für eine solche Software-Architekture ist der Begriff "Microservice Architecture". In diesem Seminar sollen Kernaspekte und Prinzipen moderner, digitaler Software-Architekturen beleuchtet und an ausgewählten Beispielen "hands on" verprobt werden.

Arbeitsaufwand:

Gesamt: 120 Std.

30 Std. Seminar (Präsenzstudium)

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

Voraussetzungen: keine		
Angebotshäufigkeit: unregelmäßig	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Architektur- und Technologiekonzepte (BA)

Lehrformen: Seminar Sprache: Deutsch / Englisch

SWS: 2

Inhalte:

In diesem Seminar sollen Kernaspekte und Prinzipen moderner, digitaler Software-Architekturen beleuchtet und an ausgewählten Beispielen "hands on" verprobt werden.

Literatur:

Wird in der jeweiligen Kickoff-Veranstaltung vorgestellt.

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0226: Seminar Datenbanksysteme für Bachelor

4 ECTS/LP

Version 1.0.0 (seit SoSe16)

Modulverantwortliche/r: Dr. Markus Endres

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden in der Lage, grundlegende Problemstellungen, Konzepte, Methoden, Verfahren, Techniken und Technologien aus dem Gebiet Datenbanken zu verstehen und bezogen auf ein spezielles Thema aus dem genannten Gebiet zu bewerten.

Sie verfügen über die Arbeitstechniken, Kommunikationsfähigkeit und Fähigkeit zum Einsatz neuer Medien, um ein spezielles Thema in Wort und Schrift klar und verständlich zu präsentieren und Themenstellungen aus dem genannten Gebiet kritisch und argumentativ zu diskutieren.

Schlüsselqualifikationen: Kommunikationsfähigkeit; Fähigkeit zum Einsatz neuer Medien; Eigenständiges Arbeiten mit englischsprachiger Fachliteratur; Präsentationstechniken

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen: Modul Datenbanksysteme (INF-0073) -	empfohlen	
Angebotshäufigkeit: unregelmäßig (i. d. R. im SoSe)	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Datenbanksysteme für Bachelor

Lehrformen: Seminar Sprache: Deutsch

Angebotshäufigkeit: jedes Sommersemester

SWS: 2

Inhalte:

Aktuelle Forschungsbeiträge aus den Bereich "Datenbanken und Informationssysteme".

Literatur:

Aktuelle Forschungsbeiträge

Zugeordnete Lehrveranstaltungen:

Seminar Datenbanksysteme (Seminar)

Aktuelle Forschungsbeiträge aus dem Bereich "Datenbanken und Informationssysteme". Das Seminar behandelt Konzepte und Techniken der Implementierung von Datenbanksystemen. Insbesondere werden Themen wie Datenstrukturen, Algorithmen, Speicher- und Indexstrukturen, Anfrageverarbeitung und -optimierung, Transaktionsverwaltung und Recovery behandelt. In der Einführungsveranstaltung am 25.04.2017 um 15:45 Uhr in Raum 2056 N klären wir organisatorische Details und verteilen die Vortragsthemen unter den Teilnehmern. Das Seminar gehört zum Bereich Datenbanken und Informationssysteme. Die Veranstaltung richtet sich sowohl an Studierende im Bachelor- als auch im Masterstudium. Das Seminar wird als Blockseminar stattfinden. Die genauen Termine werden noch bekannt gegeben.

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0231: Seminar Medical Information Sciences (BA)

4 ECTS/LP

Version 1.0.0 (seit WS16/17)

Modulverantwortliche/r: Prof. Dr. Bernhard Bauer

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden in der Lage, grundlegende Problemstellungen, Konzepte, Methoden, Verfahren, Techniken und Technologien auf dem Gebiet der Medical Information Sciences selbstständig zu erarbeiten und bezogen auf ein spezielles Thema aus dem genannten Gebiet zu bewerten. Sie verfügen über die Arbeitstechniken, Kommunikationsfähigkeit und Fähigkeit zum Einsatz neuer Medien, um ein spezielles Thema in Wort und Schrift klar und verständlich zu präsentieren und Themenstellungen aus dem genannten Gebiet kritisch und argumentativ zu diskutieren.

Schlüsselqualifikationen: Erlernen von Präsentationstechniken; Abwägen von Lösungsansätzen

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Semester	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Medical Information Sciences (Seminar)

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Inhalte:

Dieses Seminar soll die Grundlagen der Medical Information Sciences behandeln. Es sind verschiedene Themen zu bearbeiten die als Grundlage für ein nachfolgendes Praktikum dienen sollen.

Literatur:

Wird in der jeweiligen Kickoff-Veranstaltung vorgestellt.

Zugeordnete Lehrveranstaltungen:

Seminar zu Medical Information Sciences f. Bachelor (Seminar)

Bestandteil dieses Seminars sind fortgeschrittene Ansätze und Techniken im Bereich Medical Information Sciences.

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul INF-0241: Seminar Informationssysteme für Bachelor

4 ECTS/LP

Version 1.0.0 (seit WS16/17)

Modulverantwortliche/r: Dr. Markus Endres

Lernziele/Kompetenzen:

Nach dem Besuch des Seminars sind die Studierenden in der Lage, grundlegende Problemstellungen, Konzepte, Methoden, Verfahren, Techniken und Technologien aus dem Gebiet Informationssysteme zu verstehen und bezogen auf ein spezielles Thema aus dem genannten Gebiet zu bewerten.

Sie verfügen über die Arbeitstechniken, Kommunikationsfähigkeit und Fähigkeit zum Einsatz neuer Medien, um ein spezielles Thema in Wort und Schrift klar und verständlich zu präsentieren und Themenstellungen aus dem genannten Gebiet kritisch und argumentativ zu diskutieren.

Schlüsselqualifikationen: Kommunikationsfähigkeit; Fähigkeit zum Einsatz neuer Medien; Eigenständiges Arbeiten mit englischsprachiger Fachliteratur; Präsentationstechniken

Arbeitsaufwand:

Gesamt: 120 Std.

90 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

30 Std. Seminar (Präsenzstudium)

Voraussetzungen: Modul Datenbanksysteme (INF-0073) -	empfohlen	
Angebotshäufigkeit: unregelmäßig (i. d. R. im WS)	Empfohlenes Fachsemester: ab dem 5.	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Seminar Informationssysteme für Bachelor

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Prüfung

Vortrag und schriftliche Ausarbeitung

Modul GEO-3902 (= BScGl_BA): Bachelorarbeit

Bachelor Thesis

12 ECTS/LP

Version 2.0.0 (seit WS15/16)

Modulverantwortliche/r:

Alle Professoren der Geographie und Informatik, die Veranstaltungen für den Studiengang anbieten.

Lernziele/Kompetenzen:

'Die Studierenden sind mit der wissenschaftlichen Methodik sowie Techniken der Literaturrecherche vertraut, sind in der Lage, unter Anleitung praktische oder theoretische Methoden zur Bearbeitung eines vorgegebenen Themas einzusetzen und besitzen die Kompetenz, ein Problem der Geoinformatik innerhalb einer vorgegebenen Frist weitgehend selbständig mit wissenschaftlichen Methoden zu bearbeiten sowie die Ergebnisse schriftlich und mündlich darzustellen.

Schlüsselqualifikationen: Team- und Kommunikationsfähigkeit, Durchhaltevermögen, schriftliche und mündliche Darstellung eigener (praktischer oder theoretischer) Ergebnisse, Einschätzung der Relevanz eigenger Ergebnisse, Grundsätze guter wissenschaftlicher Praxis

Bemerkung:

Die Anmeldung zu einer Bachelorarbeit erfolgt in Absprache mit der Betreuerin / dem Betreuer direkt über ein Formular, das beim Prüfungsamt erhätlich ist. Der Startzeitpunkt der Arbeit ist der Termin zu dem die/der Prüfungsausschussvorsitzende dieses Formular unterschreibt. Die/der Studierende erhält eine schriftliche Mitteilung des Prüfungsamts über die Vergabe des Themas und den Bearbeitungszeitraum.

Arbeitsaufwand:

Gesamt: 360 Std.

345 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

15 Std. Seminar (Präsenzstudium)

Voraussetzungen: Empfohlene Veranstaltungen werden vom jeweiligen Betreuer		
bekanntgegeben.		
Angebotshäufigkeit: nach Bedarf	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
	6.	1 Semester
SWS:	Wiederholbarkeit:	

siehe PO des Studiengangs

Modulteile

Modulteil: Bachelorarbeit Geoinformatik

Sprache: Deutsch / Englisch

SWS: 1

Entsprechend dem gewählten Thema

Literatur:

Die Festlegung der Literatur erfolgt abhängig vom konkreten Thema der Arbeit in Absprache mit dem Betreuer.

Modulteile

Modulteil: Kolloquium Sprache: Deutsch

Angebotshäufigkeit: jedes Semester

Prüfung

Abschlussleistungen BScGI

Bachelorarbeit, Schriftliche Abschlussarbeit und Vortrag von 20-45 min.

Modul INF-0221: Anleitung zu wissenschaftlichen Arbeiten		0 ECTS/LP
Version 1.0.0		
Modulverantwortliche/r:		
Lernziele/Kompetenzen:		
Die Teilnehmer wissen, wie sie an wiss	enschaftliche Arbeiten heran gehen, we	Iche Vorgehensweise sie ans Ziel führt
und welche Maßstäbe gelten, damit ihr	e Arbeit als wissenschaftlich angesehen	wird.
Bemerkung:		
Dies ist eine freiwillige Veranstaltung u	nd gibt keine ECTS-Punkte!	
Arbeitsaufwand:		
Gesamt: 15 Std.		
Voraussetzungen:		
keine		
Angebotshäufigkeit: jedes Semester	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
		1 Semester
sws:	Wiederholbarkeit:	
1	keine	

Modulteile

Modulteil: Anleitung zu wissenschaftlichen Arbeiten

Sprache: Deutsch

SWS: 1

Inhalte:

Begleitung bei der Anfertigung von Seminar-/Bachelor-/Master-/Diplomarbeiten und Dissertationen.

Modul INF-0222: Oberseminar Informatik 0 ECTS/LP Version 1.0.0 Modulverantwortliche/r: Lernziele/Kompetenzen: Im Oberseminar werden wissenschaftliche Themen z.B. in Form von Abschlussarbeiten oder Vorträgen zu Praxis-/Forschungs-/Projektmodulen vorgestellt und diskutiert. Die Studierenden erhalten somit Einblicke in wissenschaftliches Arbeiten. Bemerkung: Dies ist eine freiwillige Veranstaltung und gibt keine ECTS-Punkte! Arbeitsaufwand: Gesamt: 30 Std. 30 Std. Seminar (Präsenzstudium) Voraussetzungen: keine Angebotshäufigkeit: jedes Semester | Empfohlenes Fachsemester: Minimale Dauer des Moduls: 1 Semester

Wiederholbarkeit:

keine

Modulteile

SWS:

2

Modulteil: Oberseminar Informatik

Lehrformen: Seminar **Sprache:** Deutsch

SWS: 2

Modul MTH-6020: Mathematik für Informatiker III a (Ergänzungsvorlesung)		0 ECTS/LP	
Version 1.0.0 Modulverantwortliche/r: apl. Prof. Dr. Dirk Hachenberger			
Arbeitsaufwand: 2 Std. Vorlesung (Präsenzstudium)			
Voraussetzungen: Mathematik für Informatiker I und II			
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 3.	Minimale Dauer des Moduls: Semester	
sws : 2	Wiederholbarkeit: siehe PO des Studiengangs		

Modulteile

Modulteil: Mathematik für Informatiker III a (Ergänzungsvorlesung)

Lehrformen: Vorlesung

Dozenten: apl. Prof. Dr. Dirk Hachenberger

Sprache: Deutsch

SWS: 2

Lernziele:

Erweiterung und Vertiefung der in Mathematik für Informatiker I und II gewonnenen Kenntnisse und Fähigkeiten.

Modul MTH-6021: Mathematik für Informatiker III b (Ergänzungsvorlesung)		0 ECTS/LP
Version 1.0.0 (bis SoSe16)		
Modulverantwortliche/r: apl. Prof. D	r. Dirk Hachenberger	
Lernziele/Kompetenzen: Erweiterung und Vertiefung der in M	lathematik für Informatiker I und II gewonr	nenen Kenntnisse und Fähigkeiten.
Arbeitsaufwand: 2 Std. Vorlesung (Präsenzstudium)		
Voraussetzungen: Mathematik für Informatiker I und II		
Angebotshäufigkeit: jedes	Empfohlenes Fachsemester:	Minimale Dauer des Moduls:
Sommersemester	2 4.	Semester
SWS:	Wiederholbarkeit:	
2	siehe PO des Studiengangs	

Modulteile

Modulteil: Mathematik für Informatiker III b (Ergänzungsvorlesung)

Lehrformen: Vorlesung

Dozenten: apl. Prof. Dr. Dirk Hachenberger

Sprache: Deutsch

SWS: 2

Lernziele:

Erweiterung und Vertiefung der in Mathematik für Informatiker I und II gewonnenen Kenntnisse und Fähigkeiten.